Fresh blood of Tibetan sheep was subjected to protein separation and spray drying, and the effects of drying process on water content, yield and nitrogen soluble index of plasma powder from blood of Tibetan sheep were...Fresh blood of Tibetan sheep was subjected to protein separation and spray drying, and the effects of drying process on water content, yield and nitrogen soluble index of plasma powder from blood of Tibetan sheep were investigated. The results showed that the optimum separation parameters were a centrifugal speed at 6 000 r/min, centrifugal time of 20 min, a mass fraction of dry matter of 20%, an inlet air temperature at 180 ℃ and a feed rate at 400 ml/h, under which the plasma protein was a pale yellow powdery solid, indicating a good separation effect.展开更多
To reveal the affecting mechanism of cooling rate on lamellarαprecipitation,the precipitation behaviors of lamellarαphase in IMI834 titanium alloy during isothermal and non-isothermal heat treatments were quantitati...To reveal the affecting mechanism of cooling rate on lamellarαprecipitation,the precipitation behaviors of lamellarαphase in IMI834 titanium alloy during isothermal and non-isothermal heat treatments were quantitatively characterized using experimental analysis.Critical precipitation temperatures at various cooling rates were obtained using thermal dilatation testing.Using metallographic microscopy,electron microprobe analysis,and data fitting methods,the quantitative evolution models of average width,volume fraction,and solute concentration in theαandβphases were built for different temperatures or cooling rates.A comparison between the two precipitation behaviors showed that the average width and volume fraction of lamellarαphase under non-isothermal conditions were smaller than those under isothermal conditions.With increasing cooling rate,the average width and volume fraction were decreased significantly,and the critical precipitation temperatures were reduced.This phenomenon is mainly attributed to the decreased diffusion velocity of solutes Al,Mo,and Nb with increasing cooling rate.展开更多
Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,...Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,are thus of great significance to investigate.However,this issue has not been well addressed mainly due to the significant difference in reported partition coefficients(e.g.,from strongly incompatible to strongly compatible)between fluid and melt(D_(W)^(fluid/melt)).Here,we used an in situ Raman spectroscopic approach to describe the W speciation,and to quantitatively determine the Dfluid/melt of individual and total W species in granite melts and coexisting Na2WO4 solutions at elevated temperatures(T;700–800C)and pressures(P;0.35–1.08 GPa).Results show that WO_(4)^(2-)and HWO4are predominant W species,and the fractions of these two species are similar in melt and coexisting fluid.The partitioning behaviors of WO_(4)^(2-)and HWO4are comparable,exhibiting strong enrichment in the fluid.The total DW fluid/melt ranges from 8.6 to 37.1.Specifically,DW fluid/melt decreases with rising T–P,indicating that shallow exsolution favors enrichment of W in evolved fluids.Furthermore,Rayleigh fractionation modeling based on the obtained D_(W)^(fluid/melt)data was used to describe the fluid exsolution processes.Our results strongly support that fluid exsolution can serve as an important mechanism to generate W-rich oreforming fluids.This study also indicates that in situ approach can be used to further investigate the geochemical behavior of ore-forming elements during the magmatic-hydrothermal transition,especially for rare metals associated with granite and pegmatite.展开更多
基金Supported by"123"Science and Technology Support Program from Science and Technology Department of Qinghai Province(2014-GX-136A)~~
文摘Fresh blood of Tibetan sheep was subjected to protein separation and spray drying, and the effects of drying process on water content, yield and nitrogen soluble index of plasma powder from blood of Tibetan sheep were investigated. The results showed that the optimum separation parameters were a centrifugal speed at 6 000 r/min, centrifugal time of 20 min, a mass fraction of dry matter of 20%, an inlet air temperature at 180 ℃ and a feed rate at 400 ml/h, under which the plasma protein was a pale yellow powdery solid, indicating a good separation effect.
基金financial supports from the National Natural Science Foundation of China(No.51675433)the Natural Science Foundation for Distinguished Young Scholars of Shaanxi Province,China(No.2019JC-09)。
文摘To reveal the affecting mechanism of cooling rate on lamellarαprecipitation,the precipitation behaviors of lamellarαphase in IMI834 titanium alloy during isothermal and non-isothermal heat treatments were quantitatively characterized using experimental analysis.Critical precipitation temperatures at various cooling rates were obtained using thermal dilatation testing.Using metallographic microscopy,electron microprobe analysis,and data fitting methods,the quantitative evolution models of average width,volume fraction,and solute concentration in theαandβphases were built for different temperatures or cooling rates.A comparison between the two precipitation behaviors showed that the average width and volume fraction of lamellarαphase under non-isothermal conditions were smaller than those under isothermal conditions.With increasing cooling rate,the average width and volume fraction were decreased significantly,and the critical precipitation temperatures were reduced.This phenomenon is mainly attributed to the decreased diffusion velocity of solutes Al,Mo,and Nb with increasing cooling rate.
基金supported by the National Natural Science Foundation of China(41922023,41830428,42173038,41973055,and 42130109)the Research Funds for the Frontiers Science Center for Critical Earth Material Cycling(Nanjing University,China)the Fundamental Research Funds for the Central Universities,China(2022300192).
文摘Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,are thus of great significance to investigate.However,this issue has not been well addressed mainly due to the significant difference in reported partition coefficients(e.g.,from strongly incompatible to strongly compatible)between fluid and melt(D_(W)^(fluid/melt)).Here,we used an in situ Raman spectroscopic approach to describe the W speciation,and to quantitatively determine the Dfluid/melt of individual and total W species in granite melts and coexisting Na2WO4 solutions at elevated temperatures(T;700–800C)and pressures(P;0.35–1.08 GPa).Results show that WO_(4)^(2-)and HWO4are predominant W species,and the fractions of these two species are similar in melt and coexisting fluid.The partitioning behaviors of WO_(4)^(2-)and HWO4are comparable,exhibiting strong enrichment in the fluid.The total DW fluid/melt ranges from 8.6 to 37.1.Specifically,DW fluid/melt decreases with rising T–P,indicating that shallow exsolution favors enrichment of W in evolved fluids.Furthermore,Rayleigh fractionation modeling based on the obtained D_(W)^(fluid/melt)data was used to describe the fluid exsolution processes.Our results strongly support that fluid exsolution can serve as an important mechanism to generate W-rich oreforming fluids.This study also indicates that in situ approach can be used to further investigate the geochemical behavior of ore-forming elements during the magmatic-hydrothermal transition,especially for rare metals associated with granite and pegmatite.