method of extracting astaxanthin from Phaffia rhodozyma with various solvents after acid washing was investigated. The extraction efficiency was distinctly increased after acid washing of P. rhodozyma cells. When the ...method of extracting astaxanthin from Phaffia rhodozyma with various solvents after acid washing was investigated. The extraction efficiency was distinctly increased after acid washing of P. rhodozyma cells. When the concentration of HCl was 0.4 mol.L^-1, the highest extraction efficiency of astaxanthin was achieved which was about three times higher than the control. Acetone or benzene as single polar or non-polar solvent was the most ef- fective solvent in our research. With a combination of isopropanol and n-hexane (volume ratio of 2 : 1), the maxi- mal extraction efficiency was achieved, approximately 60% higher than that obtained with a single solvent. The liquid-solid ratio and the extracting time were also optimized. Under the optimum extraction conditions, the extraction yield of astaxanthin exceeded 98%.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities (FRF-AS-10-001B) and the National Natural Science Foundation of China (11071013).
文摘method of extracting astaxanthin from Phaffia rhodozyma with various solvents after acid washing was investigated. The extraction efficiency was distinctly increased after acid washing of P. rhodozyma cells. When the concentration of HCl was 0.4 mol.L^-1, the highest extraction efficiency of astaxanthin was achieved which was about three times higher than the control. Acetone or benzene as single polar or non-polar solvent was the most ef- fective solvent in our research. With a combination of isopropanol and n-hexane (volume ratio of 2 : 1), the maxi- mal extraction efficiency was achieved, approximately 60% higher than that obtained with a single solvent. The liquid-solid ratio and the extracting time were also optimized. Under the optimum extraction conditions, the extraction yield of astaxanthin exceeded 98%.