Graphene oxide (GO) contains numerous functional groups that facilitate the intercalation of polar solvents. The properties and applications of GO are closely related to its interlayer spacing. We report on the chan...Graphene oxide (GO) contains numerous functional groups that facilitate the intercalation of polar solvents. The properties and applications of GO are closely related to its interlayer spacing. We report on the changes in the interlayer spacing of GO after the adsorption of water molecules and the polar organic solvents C2H602 (EG), C3HTNO (DMF), C5H9NO (NMP). Experiments were conducted to investigate the variations in the functional groups and structure of GO after solvent adsorp-tion, and they play a vital role in modeling and verifying the results of molecular dynamics simulation. The most stable GO structures are obtained through molecular dynamics simulation. The expansion of the interlayer spacing of GO after the adsorption of monolayer solvent molecules corresponds to the minimum three-dimensional size of the solvent molecules. The spatial arrangement of solvent molecules also contributes to the changes in interlayer spacing. Most adsorbed molecules are oriented parallel to the carbon plane of GO. However, as additional molecules are adsorbed into the interlaminations of GO, the adsorbed molecules are oriented perpendicular to the carbon plane of GO, and a large space forms between two GO interlayers. In addition, the role of large molecules in increasing interlayer spacing becomes more crucial than that of water molecules in the adsorption of binary solvent systems by GO.展开更多
ZnO hierarchical aggregates have been successfully synthesized by solvothermal methods through reaction of zinc acetate and potassium hydroxide in methanol solution. The shapes of the aggregates were controlled by var...ZnO hierarchical aggregates have been successfully synthesized by solvothermal methods through reaction of zinc acetate and potassium hydroxide in methanol solution. The shapes of the aggregates were controlled by varying the ratio of Zn2~ and OH- ions in the reaction system, while the size can be tuned from 2μm to 100 nm. Oriented attachment was found to be the main mechanism of the three-dimensional assembly of small ZnO nanocrystallites into large aggregates. The performance of these aggregates in dye-sensitized solar cells (DSCs) indicated that hierarchical structured photoelectrodes can increase energy conversion efficiency of DSCs effectively when the sizes of aggregates match the wavelengths of visible light.展开更多
In this work, surface-mazelike Zn O, Cu, and Ni hierarchical structures were synthesized via a versatile ethylene glycol- mediated solvothermal method. The structure evolution of these materials bore striking similari...In this work, surface-mazelike Zn O, Cu, and Ni hierarchical structures were synthesized via a versatile ethylene glycol- mediated solvothermal method. The structure evolution of these materials bore striking similarities, including(1) initial formation of metal alkoxides precursors and(2) subsequent structural evolution of products from tiered plates to jigsaw puzzles; then to extrusion ridges, nests and spindles; and thereafter to final mazelike structures driven by persistent thermal decomposition of preformed precursors. Based on their unique surface morphologies in sinuous asymmetry, it is anticipated that such mazelike hierarchical structures may shed new light on the development of morphology-controlled adsorption and heterogeneous catalysts.展开更多
基金supported by the National Natural Science Foundation of China(No.21576188)
文摘Graphene oxide (GO) contains numerous functional groups that facilitate the intercalation of polar solvents. The properties and applications of GO are closely related to its interlayer spacing. We report on the changes in the interlayer spacing of GO after the adsorption of water molecules and the polar organic solvents C2H602 (EG), C3HTNO (DMF), C5H9NO (NMP). Experiments were conducted to investigate the variations in the functional groups and structure of GO after solvent adsorp-tion, and they play a vital role in modeling and verifying the results of molecular dynamics simulation. The most stable GO structures are obtained through molecular dynamics simulation. The expansion of the interlayer spacing of GO after the adsorption of monolayer solvent molecules corresponds to the minimum three-dimensional size of the solvent molecules. The spatial arrangement of solvent molecules also contributes to the changes in interlayer spacing. Most adsorbed molecules are oriented parallel to the carbon plane of GO. However, as additional molecules are adsorbed into the interlaminations of GO, the adsorbed molecules are oriented perpendicular to the carbon plane of GO, and a large space forms between two GO interlayers. In addition, the role of large molecules in increasing interlayer spacing becomes more crucial than that of water molecules in the adsorption of binary solvent systems by GO.
文摘ZnO hierarchical aggregates have been successfully synthesized by solvothermal methods through reaction of zinc acetate and potassium hydroxide in methanol solution. The shapes of the aggregates were controlled by varying the ratio of Zn2~ and OH- ions in the reaction system, while the size can be tuned from 2μm to 100 nm. Oriented attachment was found to be the main mechanism of the three-dimensional assembly of small ZnO nanocrystallites into large aggregates. The performance of these aggregates in dye-sensitized solar cells (DSCs) indicated that hierarchical structured photoelectrodes can increase energy conversion efficiency of DSCs effectively when the sizes of aggregates match the wavelengths of visible light.
基金supported by the National Natural Science Foundation of China(51072087)Specialized Research Fund for the Doctoral Program of Higher Education(20113719110001)
文摘In this work, surface-mazelike Zn O, Cu, and Ni hierarchical structures were synthesized via a versatile ethylene glycol- mediated solvothermal method. The structure evolution of these materials bore striking similarities, including(1) initial formation of metal alkoxides precursors and(2) subsequent structural evolution of products from tiered plates to jigsaw puzzles; then to extrusion ridges, nests and spindles; and thereafter to final mazelike structures driven by persistent thermal decomposition of preformed precursors. Based on their unique surface morphologies in sinuous asymmetry, it is anticipated that such mazelike hierarchical structures may shed new light on the development of morphology-controlled adsorption and heterogeneous catalysts.