Switch grass was developed as a pioneer energy crop in USA with great industrial prospect. It contains about 60% sugars and 18% lignin. The purpose of this research is to find pretreatment process to fractionate cellu...Switch grass was developed as a pioneer energy crop in USA with great industrial prospect. It contains about 60% sugars and 18% lignin. The purpose of this research is to find pretreatment process to fractionate cellulose, hemicellulose and lignin from switch grass to obtain much more useful chemicals and enhance the residue solid to be hydrolyzed by enzymes. The six different pretreatment methods were studied, such as hot water pretreatment (HWP) alone, dilute acid pretreatment (DAP), ammonia pretreatment (AP), lime pretreatment (LP), organosolv water / ehanol pretreatment (OWEP), and organosolv water / acetone pretreatment (OWAP). It was the best method combining DAP with OWEP because the hemicellulose sugars were recovered in the first residual liquid while a varied amount of cellulose was retained in the residual solid and the lignin fraction was obtained by simply adjusting the pH from the second liquid. The result shows the optimal two-stage process consisted of the first stage DAP at 428 K for 7 min with 0.8% sulfuric acid, resulting in 79.82% glucose recovery yield and 98.74% xylose removal and the second stage OWEP at 468K for 20 min in 45% (v / v) ethanol with 0.4% NaOH, resulting in 62% total glucose yield 99% xylose and 80% lignin removal. After enzymatic hydrolysis, the glucose yield was up to 92.6%, compared with 16% yield from untreated switch grass. Scanning electron microscopy (SEM) highlighted the differences in switch grass structure from the various pretreatment methods during biomass fractionation.展开更多
Supercritical carbon dioxide,with water-ethanol as co-solvent,was applied to pretreat corn stover to enhance its enzymatic hydrolysis.The efficiency of pretreatment was evaluated by the final reducing sugar yield obta...Supercritical carbon dioxide,with water-ethanol as co-solvent,was applied to pretreat corn stover to enhance its enzymatic hydrolysis.The efficiency of pretreatment was evaluated by the final reducing sugar yield obtained from the enzymatic hydrolysis of cellulose.Under the operation conditions of pretreatment pressure 15 MPa,temperature 180 ℃ and time 1 h,the optimal sugar yield of 77.8℅ was obtained.Scanning electron microscopy(SEM) and chemical composition analysis were applied to the pretreated corn stover.The results showed that the surface morphology and microscopic structure of pretreated corn stover were greatly changed.After the pretreatment,the contents of hemicellulose and lignin were reduced obviously.Thus more cellulose was exposed,increasing the sugar yield.展开更多
基金Acknowledgments This research was supported by Hubei Provincal Department of Education (No. CXY2009B2008), Angel Yeast Co.Ltd (SDH200800230), the Science Foundation of Yichang City (No. A2007103-1), the Alan G. MacDiarmid Institute of Renewable Energy, Yichang, China and the USDA Western Regional Research Center (WRRC). The authors thank WRRC Center Director James N. Seiber, Artur, Klamczynski and Charles Lee for the thoughtful discussions and technical insights, and Miss Tina William for the SEM imagines.
文摘Switch grass was developed as a pioneer energy crop in USA with great industrial prospect. It contains about 60% sugars and 18% lignin. The purpose of this research is to find pretreatment process to fractionate cellulose, hemicellulose and lignin from switch grass to obtain much more useful chemicals and enhance the residue solid to be hydrolyzed by enzymes. The six different pretreatment methods were studied, such as hot water pretreatment (HWP) alone, dilute acid pretreatment (DAP), ammonia pretreatment (AP), lime pretreatment (LP), organosolv water / ehanol pretreatment (OWEP), and organosolv water / acetone pretreatment (OWAP). It was the best method combining DAP with OWEP because the hemicellulose sugars were recovered in the first residual liquid while a varied amount of cellulose was retained in the residual solid and the lignin fraction was obtained by simply adjusting the pH from the second liquid. The result shows the optimal two-stage process consisted of the first stage DAP at 428 K for 7 min with 0.8% sulfuric acid, resulting in 79.82% glucose recovery yield and 98.74% xylose removal and the second stage OWEP at 468K for 20 min in 45% (v / v) ethanol with 0.4% NaOH, resulting in 62% total glucose yield 99% xylose and 80% lignin removal. After enzymatic hydrolysis, the glucose yield was up to 92.6%, compared with 16% yield from untreated switch grass. Scanning electron microscopy (SEM) highlighted the differences in switch grass structure from the various pretreatment methods during biomass fractionation.
文摘Supercritical carbon dioxide,with water-ethanol as co-solvent,was applied to pretreat corn stover to enhance its enzymatic hydrolysis.The efficiency of pretreatment was evaluated by the final reducing sugar yield obtained from the enzymatic hydrolysis of cellulose.Under the operation conditions of pretreatment pressure 15 MPa,temperature 180 ℃ and time 1 h,the optimal sugar yield of 77.8℅ was obtained.Scanning electron microscopy(SEM) and chemical composition analysis were applied to the pretreated corn stover.The results showed that the surface morphology and microscopic structure of pretreated corn stover were greatly changed.After the pretreatment,the contents of hemicellulose and lignin were reduced obviously.Thus more cellulose was exposed,increasing the sugar yield.