The rheological properties of soy protein isolate (SPI) and polyurethane (PU) in the PAN/DMSO solution were investigated in this study. The results showed that all these solutions possessed pseudo-plastic solution...The rheological properties of soy protein isolate (SPI) and polyurethane (PU) in the PAN/DMSO solution were investigated in this study. The results showed that all these solutions possessed pseudo-plastic solution properties. There are opposite effects of SPI and PU in the PAN/DMSO solution. Their apparent viscosity, degree of non-Newtonian fluid, and extent of structuralization of blend system increase with the addition of SPI, whereas, all of these decrease with the addition of PU. Moreover, the theological properties of PAN/DMSO solution were affected when SPI and PU were added equally, and SPI presented more effect when the proportion of ingredient was less, and PU presented more effect when the proportion of ingredient was more.展开更多
A numerical simulation was performed to investigate the interaction of two bubbles rising side by side in shear-thinning fluid using volume of fluid (VOF) method coupled with continuous surface force (CSF) method....A numerical simulation was performed to investigate the interaction of two bubbles rising side by side in shear-thinning fluid using volume of fluid (VOF) method coupled with continuous surface force (CSF) method. By considering rheological characteristics of fluid, this approach was able to accurately capture the deformation of bubble interface, and validated by comparing with the experimental results. The rising of bubble pairs with different configurations, including horizontal alignment and oblique alignment, was simulated by the method. The influences of the bubble initial distance and the bubble alignment were studied by analyzing the bubble deformation, rising paths and flow fields surrounding bubbles. The results indicate that within certam mltlal bubble spacing of S = 3.3 (S* = SI/D, SI initial distance between bubbles, and D bubble diameter), the dynamic interaction between two bub- bles aligned horizontally shows repulsive effect that decreases with the increase of initial bubble spacing, but weakens to certain degree by the shear-thinning properties of fluid. However, the interaction between two bubbles aligned obliquely presents a repulsive effect for the small angle involved but an attractive impact for the large one, which is vet strengthened by the rheological characteristics of fluid.展开更多
In order to develop turbulent drag-reducing technology by using an environmentally friendly additive in a water-transporting system,the drag reducing characteristics in a non-ionic surfactant(Oleyldimethylamineoxide,O...In order to develop turbulent drag-reducing technology by using an environmentally friendly additive in a water-transporting system,the drag reducing characteristics in a non-ionic surfactant(Oleyldimethylamineoxide,ODMAO) dilute aqueous solution flowing in a circular pipe of 5 mm diameter have been experimentally investigated with an air-driven fluid resistance test device.The rheological characteristics of the solution have also been examined by a rheometer with a cone-plate flow cell.The results show that the ODMAO solutions are drag-reducing when concentration is 400 ppm or higher,that the critical Reynolds number corresponding to the maximum drag reduction rate increases with both concentration and temperature,and that the maximum drag reduction rate can reach up to 70% in the straight pipe.At low shear rates,the shear viscosity of ODMAO solutions with a relatively high drag-reduction behaves similarly to Newtonian fluids;at above a certain critical shear rate,it is firstly shear-thickening,then shear-thinning.Such shear-rate-dependent characteristics of the shear viscosity are attributed to the different transitions of micellar network structure induced by different shear rates.Relaxation of shear stress after removing an applied constant shear rate at which the solution is in the SIS(shear-induced structure) state is found to be well expressed by a 2-step Maxwell model with a tail relaxation time much shorter than that for a drag-reducing cationic surfactant,which indicates that for the ODMAO solution,a viscoelasticity as strong as a drag-reducing cationic surfactant is not needed to realize turbulent drag-reduction.展开更多
基金National Natural Science Foundation of China (No.50303003)
文摘The rheological properties of soy protein isolate (SPI) and polyurethane (PU) in the PAN/DMSO solution were investigated in this study. The results showed that all these solutions possessed pseudo-plastic solution properties. There are opposite effects of SPI and PU in the PAN/DMSO solution. Their apparent viscosity, degree of non-Newtonian fluid, and extent of structuralization of blend system increase with the addition of SPI, whereas, all of these decrease with the addition of PU. Moreover, the theological properties of PAN/DMSO solution were affected when SPI and PU were added equally, and SPI presented more effect when the proportion of ingredient was less, and PU presented more effect when the proportion of ingredient was more.
基金Supported by the National Natural Science Foundation of China (21076139, 21106106), Tianjin Natural Science Foundation of China (12JcQNJC3700), and Foundation of Tianjin Educational Committee of China (20100508).
文摘A numerical simulation was performed to investigate the interaction of two bubbles rising side by side in shear-thinning fluid using volume of fluid (VOF) method coupled with continuous surface force (CSF) method. By considering rheological characteristics of fluid, this approach was able to accurately capture the deformation of bubble interface, and validated by comparing with the experimental results. The rising of bubble pairs with different configurations, including horizontal alignment and oblique alignment, was simulated by the method. The influences of the bubble initial distance and the bubble alignment were studied by analyzing the bubble deformation, rising paths and flow fields surrounding bubbles. The results indicate that within certam mltlal bubble spacing of S = 3.3 (S* = SI/D, SI initial distance between bubbles, and D bubble diameter), the dynamic interaction between two bub- bles aligned horizontally shows repulsive effect that decreases with the increase of initial bubble spacing, but weakens to certain degree by the shear-thinning properties of fluid. However, the interaction between two bubbles aligned obliquely presents a repulsive effect for the small angle involved but an attractive impact for the large one, which is vet strengthened by the rheological characteristics of fluid.
基金supported by the Center of Natural Science and Technology of Japan
文摘In order to develop turbulent drag-reducing technology by using an environmentally friendly additive in a water-transporting system,the drag reducing characteristics in a non-ionic surfactant(Oleyldimethylamineoxide,ODMAO) dilute aqueous solution flowing in a circular pipe of 5 mm diameter have been experimentally investigated with an air-driven fluid resistance test device.The rheological characteristics of the solution have also been examined by a rheometer with a cone-plate flow cell.The results show that the ODMAO solutions are drag-reducing when concentration is 400 ppm or higher,that the critical Reynolds number corresponding to the maximum drag reduction rate increases with both concentration and temperature,and that the maximum drag reduction rate can reach up to 70% in the straight pipe.At low shear rates,the shear viscosity of ODMAO solutions with a relatively high drag-reduction behaves similarly to Newtonian fluids;at above a certain critical shear rate,it is firstly shear-thickening,then shear-thinning.Such shear-rate-dependent characteristics of the shear viscosity are attributed to the different transitions of micellar network structure induced by different shear rates.Relaxation of shear stress after removing an applied constant shear rate at which the solution is in the SIS(shear-induced structure) state is found to be well expressed by a 2-step Maxwell model with a tail relaxation time much shorter than that for a drag-reducing cationic surfactant,which indicates that for the ODMAO solution,a viscoelasticity as strong as a drag-reducing cationic surfactant is not needed to realize turbulent drag-reduction.