Techniques of rotating-disk and catalyst were used in investigating the kinetics of dolomite dissolution in flowing CO2-H2O system. Experiments run in the solutions equilibrated with various CO2 partial pressures (PCO...Techniques of rotating-disk and catalyst were used in investigating the kinetics of dolomite dissolution in flowing CO2-H2O system. Experiments run in the solutions equilibrated with various CO2 partial pressures (PCO2) from 30 to 100000 Pa. It shows that dissolution rates ofdolomite are related with rotating speeds at conditions far from equilibrium. This was explained by modified diffusion boundary layer (DBL) model. In addition, the dissolution rates increase after addition of carbonic anhydrase (CA) to solutions, where the CA catalyzes CO2 conversion. However, great differences occur among various CO2 partial pressures. The experimental observations give a conclusion that the modified DBL model enables one to predict dissolution rates and their behaviour at various PCO2 with satisfactory precision at least far from equilibrium.展开更多
A non-destructive, safe and practical strategy to produce high quality graphene in high yield is urgently required, since this would pave the way for a wide range of applications of graphene in the future. Here we pre...A non-destructive, safe and practical strategy to produce high quality graphene in high yield is urgently required, since this would pave the way for a wide range of applications of graphene in the future. Here we present a pH-responsive water-dispersible method for the exfoliation and functionalization of graphene by using lysozyme. The pH-responsive dispersion of graphene may be useful for the reversible assembly of multicomponent/multifunctional nanohybrid materials and nanoscale electronic devices. More importantly, composites can be easily constructed through the interactions between disulphide groups in lysozyme and gold nanoparticles (AuNPs). The resulting graphene-AuNPs composites show excellent catalytic activity towards reduction of o-nitroaniline by NaBH4. Since lysozyme is low cost and has antibacterial properties, and has been widely used in food preservation, medicine and the pharmaceutical industry, our approach may open a new scalable route for the manufacture of high-quality, nondestructive graphene for practical applications.展开更多
基金the National Natural Science Foundation of China (Grant No.40073026), the Ministry of Land and Resources of China (Grant No. 9806), the Ministry of Science and Technology of China (Special Research Project for Social Commonweal) (Grant No. 164), the Na
文摘Techniques of rotating-disk and catalyst were used in investigating the kinetics of dolomite dissolution in flowing CO2-H2O system. Experiments run in the solutions equilibrated with various CO2 partial pressures (PCO2) from 30 to 100000 Pa. It shows that dissolution rates ofdolomite are related with rotating speeds at conditions far from equilibrium. This was explained by modified diffusion boundary layer (DBL) model. In addition, the dissolution rates increase after addition of carbonic anhydrase (CA) to solutions, where the CA catalyzes CO2 conversion. However, great differences occur among various CO2 partial pressures. The experimental observations give a conclusion that the modified DBL model enables one to predict dissolution rates and their behaviour at various PCO2 with satisfactory precision at least far from equilibrium.
基金Acknowledgements Financial support was provided by the National Basic Research Program (973 Program) of China (Nos. 2011CB936004 and 2012CB720602), and theNational Natural Science Foundation of China (NSFC), Nos. (21210002 and 91213302).
文摘A non-destructive, safe and practical strategy to produce high quality graphene in high yield is urgently required, since this would pave the way for a wide range of applications of graphene in the future. Here we present a pH-responsive water-dispersible method for the exfoliation and functionalization of graphene by using lysozyme. The pH-responsive dispersion of graphene may be useful for the reversible assembly of multicomponent/multifunctional nanohybrid materials and nanoscale electronic devices. More importantly, composites can be easily constructed through the interactions between disulphide groups in lysozyme and gold nanoparticles (AuNPs). The resulting graphene-AuNPs composites show excellent catalytic activity towards reduction of o-nitroaniline by NaBH4. Since lysozyme is low cost and has antibacterial properties, and has been widely used in food preservation, medicine and the pharmaceutical industry, our approach may open a new scalable route for the manufacture of high-quality, nondestructive graphene for practical applications.