The Nd-doped TiO2 thin films with higher hydrophilic and photocatalytic activities were prepared on glass slides by an acid-catalyzed sol?gel method. The effects of Nd doping on crystalline phase, surface composition...The Nd-doped TiO2 thin films with higher hydrophilic and photocatalytic activities were prepared on glass slides by an acid-catalyzed sol?gel method. The effects of Nd doping on crystalline phase, surface composition and optical property were investigated by means of techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), optical contact angle tester and UV-Vis spectroscopy. The results show that Nd doping obviously influences the hydrophilic and photocatalytic activities of TiO2thin films. Nd doping could cause the TiO2 lattice distortion, inhibit phase transition from anatase to rutile, cause red shift of the absorption spectrum edge, produce hydroxyl radicals (·OH), and accelerate surface hydroxylation, which result in a significant improvement in the hydrophilicity and photoreactivity of Nd-doped TiO2 thin films. When the content of Nd is 0.1% (mass fraction), TiO2 thin films achieve the smallest grain size (about 15 nm), and the hydrophilic and photocatalytic activities of TiO2 thin film reach the maximum, the contact angle is only 8.1°, and 92% of methylene blue is finally degraded. Moreover, the modification mechanism of Nd doping was also discussed.展开更多
Titania films with nano-sized pores were prepared on the NaOH?HCl pretreated NiTi alloy substrate by sol?gel method.A crack-free film is obtained for the sample with a dense inner layer and a porous outside layer(s...Titania films with nano-sized pores were prepared on the NaOH?HCl pretreated NiTi alloy substrate by sol?gel method.A crack-free film is obtained for the sample with a dense inner layer and a porous outside layer(sample TC1+1).The X-ray diffraction shows that the titania films are composed of anatase,and a little Ni4Ti3 phase in the heat treated substrate is also detected.The X-ray photoelectron spectroscopy results indicate that the titania film completely covered the NiTi substrate for sample TC1+1.The sample TC1+1 is hydrophilic with a contact angle about 20°,and UV illumination treatment for 15 min further decreases the contact angle to(9.2±3.2)°.The potentiodynamic polarization test in 0.9% NaCl solution reveals a better corrosion resistance of sample TC1+1 than the polished NiTi sample.展开更多
The precursor sol of alumina was prepared by sol-gel method with aluminum nitrate and malic acid as raw materials.The effects of content of malic acid and polyvinylpyrrolidone (PVP) on sol spinnability were explored...The precursor sol of alumina was prepared by sol-gel method with aluminum nitrate and malic acid as raw materials.The effects of content of malic acid and polyvinylpyrrolidone (PVP) on sol spinnability were explored.The gel fibers with above 80 cm in length were obtained by mixing aluminum nitrate,malic acid and PVP on mass ratio of 10 3 1.5.Thermogravimetry-differential scanning calorimetry (TG-DSC),Fourier transform infrared (FTIR) spectrum,X-ray diffractometry (XRD),and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers.The alumina fibers with a smooth surface and about 20μm in diameter were obtained by sintering at 1 200℃,and their main phase was indentified to be α-Al2O3.展开更多
The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structur...The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.展开更多
A sol-gel method using lauric acid as surfactant was used to synthesize Li4Ti5O12 nanocrystals with an ultra-fine particle size distribution between 120 and 250 nm.In order to obtain the electrode materials with the b...A sol-gel method using lauric acid as surfactant was used to synthesize Li4Ti5O12 nanocrystals with an ultra-fine particle size distribution between 120 and 250 nm.In order to obtain the electrode materials with the best electrochemical performance,the content of lauric acid during Li4Ti5O12 synthesis was systematically studied.The physical and electrochemical properties of the synthesized samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),laser particle size analysis,alternating current impedance(AC) and galvanostatic charge-discharge experiments.The highly dispersed Li4Ti5O12 nanocrystals obtained at 800 ℃ for 10 h can deliver a specific capacity of 163.3 mA-h/g at 1C rate without obvious capacity fade up to 50 cycles.The results suggest that well dispersed Li4Ti5O12 nanocrystals shorten the Li-ion diffusion length and enhance the electrochemical kinetics of the samples,which are very crucial to high rate capability.展开更多
Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sint...Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.展开更多
Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface...Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.展开更多
Cu-excess CuxAlO2 ceramics with delafossite phases were synthesized using sol-gel. In the composition range of 1≤x〈1. 04,there are no detectable non-delafossite phases. Weak diffraction peaks of CuO are observed whe...Cu-excess CuxAlO2 ceramics with delafossite phases were synthesized using sol-gel. In the composition range of 1≤x〈1. 04,there are no detectable non-delafossite phases. Weak diffraction peaks of CuO are observed when x ≥1.04. The room temperature conductivity of the CU1.04AlO2 sample is improved by nearly an order of magnitude over that of the CuAlO2 sample. The major defect mechanism responsible for the conductivity enhancement is proposed to be substitution defects of CuAl (Cu^2 + ions substitute Al^3 + ions). The composition formula unit for Cu-excess Cux AlO2 may be expressed as Cu(All yCuy)O2.展开更多
La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synt...La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synthesized by sol-gel and coprecipitation methods, respectively. The structure, electrical transport properties and surface morphology of the targets and films were studied. It is found that, compared with coprecipitation method, the sol-gel target has more homogeneous components and larger density and grain size, thus the higher insulator-metal transition temperature and larger temperature coefficient of resistivity. The thin film prepared by sol-gel target has a uniform grain size and higher quality. The metal-insulator transition temperature is higher and the laser induced voltage signal is larger. Preparing the target by sol-gel method can largely improve the properties of corresponding thin films in pulsed laser deposition process.展开更多
Li2SiO3 was synthesized by combination of sol-gel method and calcination at high temperature using Li2CO3, HNO3, Si(OC2H5)4 and C2H5OH as starting materials. The effects of calcination temperature and refluxing syst...Li2SiO3 was synthesized by combination of sol-gel method and calcination at high temperature using Li2CO3, HNO3, Si(OC2H5)4 and C2H5OH as starting materials. The effects of calcination temperature and refluxing system on the composition and properties of lithium silicate were investigated. The samples were characterized by TGA/DTA, XRD, SEM and particle size analysis. Li2FeSiO4 was prepared by the solid-state reaction between Li2SiO3 and FeC2O4·2H2O. The XRD patterns show that the use of refluxing system in the sol-gel preparation can decrease the Li2Si2O5 and Li4SiO4 impurities in the Li2SiO3 sample. The calcination temperature plays an important role in the properties of the Li2SiO3 samples. The sample calcined at 700 °C has high purity of 97% Li2SiO3 and good morphology as precursor of Li2FeSiO4. It consists of primary particles with size of 1-3 μm, and the primary particle clusters form agglomerates with loose and porous appearance.展开更多
Neodymium doping titania was loaded to silicon dioxide to prepare Nd/TiO2-SiO2 by sol-gel method and Nd/TiO2-SiO2 was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transf...Neodymium doping titania was loaded to silicon dioxide to prepare Nd/TiO2-SiO2 by sol-gel method and Nd/TiO2-SiO2 was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR) and diffuse reflectance spectra (DRS). Photocatalytic activities of Nd/TiO2-SiO2 with different neodymium contents were evaluated by degradation of methyl orange. The light absorption of Nd/TiO2-SiO2 increased with increasing doping neodymium in a visible light range of 388-619 nm, and Nd doping was in favor of decreasing the recombination of photo-generated electrons with holes. Nd and SiO2 improved the photocatalytic activity of TiO2. The optimal molar fraction of Nd to Ti was 0.1%, and the optimum calcination temperature was 600 ℃. The highest degradation rate of methyl orange was 82.9% after irradiation for 1 h.展开更多
The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to...The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to characterize the properties of LiMnPO4/C. The XRD studies show that the pure olivine phase LiMnPO4 can be obtained at a low temperature of 500 °C. The SEM analyses illustrate that the citric acid used as the chelating reagent and carbon source can restrain the particle size of LiMnPO4/C well. The LiMnPO4/C sample synthesized at 500 °C for 10 h performs the highest initial discharge capacity of 122.6 mA-h/g, retaining 112.4 mA-h/g over 30 cycles at 0.05C rate. The citric acid based sol-gel method is favor to obtain the high electrochemical performance of LiMnPO4/C.展开更多
A series of BiFeO3 and lanthanum‐doped BiFeO3 photocatalysts were synthesized by a facile sol‐gel method using citric acid as complexing agent, and used to remove phenol in industrial wastewater under simulated sunl...A series of BiFeO3 and lanthanum‐doped BiFeO3 photocatalysts were synthesized by a facile sol‐gel method using citric acid as complexing agent, and used to remove phenol in industrial wastewater under simulated sunlight irradiation. The samples were characterized by X‐ray diffraction, energy dispersive spectroscopy, X‐ray photoelectron spectroscopy, UV‐Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The introduction of La effectively suppressed the generation of an impurity phase. All the metals (La, Bi and Fe) are well distributed. Under simulated sunlight irradiation, the La‐doped BiFeO3 photocatalysts exhibited superior photocatalytic activity to pure BiFeO3. The 15%La‐doped BiFeO3 photocatalyst exhibited the best activity, with a degradation rate of 96%and COD removal rate of 81.53%after irradiation for 180 min, and it showed good recycling stability. The enhanced photocatalytic ability of 15% La‐doped BiFeO3 was attributed to the in‐crease of adsorbed surface hydroxyl groups, enhancement of visible light absorption and reduction of electron‐hole recombination. We confirmed that the primary active species was -OH by adding different scavengers during the photodegradation of phenol and proposed a reaction mechanism based on these experiments.展开更多
Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X...Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X-ray diffraction (XRD), atomic force microcopy (AFM) and photoluminescence (PL). The results indicate that both of the microstructure and luminescence are found to be dependent on Er^3+ substituting sites. The samples with A-site substitution have smaller lattice constants, larger grains and smoother surface than those with B-site substitution. The photoluminescence spectra show that both of the samples have two stronger green emission bands centered at 528 and 548 nm and a weak red emission band centered at 673 nm, which correspond to the relaxation of Er^3+ from ^2H11/2, ^4S3/2, and ^4F9/2 levels to the ground level ^4I15/2, respectively. Compared with B-site doped films, A-site doped films have a stronger integrated intensity of green emissions and a weaker relative intensity of red emissions. The differences could be explained by the crystalline quality and cross relaxation (CR) process.展开更多
The Li3 2xMgxV2(PO4)3/C (x-=0, 0.01, 0.03 and 0.05) composites were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurement...The Li3 2xMgxV2(PO4)3/C (x-=0, 0.01, 0.03 and 0.05) composites were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The XRD results reveal that a small amount of Mg2+ doping into Li sites does not significantly change the monoclinic structure of Li3V2(PO4)3, but Mg-doped Li3W2(PO4)3 has larger cell volume than the pristine Li3V2(PO4)3. All Mg-doped composites display better electrochemical performance than the pristine one, and Liz.94Mgo.03Vz(P04)3/C composite exhibits the highest capacity and the best cycle performance among all above-mentioned composites. The analysis of Li+ diffusion coefficients in Li3V2(PO4)3/C and Li2.94Mgo.03V2(P04)3/C indicates that rapid Li+ diffusion results from the doping of Mg2+ and the rapid Li+ diffusion is responsible for the better electrochemical performance of Mg-doped Li3V2(PO4)3/C composite cathode materials.展开更多
To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vi...To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vis DRS techniques.The results showed that single or double doping did not change the crystalline structure and morphology,but the particle size decreased with Ni doping.The band gap energy absorption edge of Ni-B-BiVO4shifted to a longer wavelength compared with undoped,B or Ni single doped BiVO4.More V4+and surface hydroxyl oxygen were observed in BiVO4after Ni-B co-doping.When the optimal mass fraction of Ni is0.30%,the degradation rate of MO in50min is95%for0.3Ni-B-BiVO4sample which also can effectively degrade methyl blue(MB),acid orange(AOII)II and rhodamine B(RhB).The enhanced photocatalytic activity is attributed to the synergistic effects of B and Ni doping.展开更多
Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resu...Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’.展开更多
The support of catalyst for the direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction was prepared by the sol-gel method. Compared with activated charcoal, molecular sieve, porous ceramics...The support of catalyst for the direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction was prepared by the sol-gel method. Compared with activated charcoal, molecular sieve, porous ceramics, hopcalite, the support prepared by the sol-gel method has higher activity. The characterization of the support by X-ray diffraction (XRD) and transmission electron microscope (TEM) show that the mare crystal phase is Co2MnO4 and the average particle diameter is about 40 nm. The optimum conditions for synthesis of the support were determined by orthogonal experiments, which indicate that the proportion of Cu, Mn, and Co is the first important factor influencing the yield and selectivity of DPC. Temperature of calcination is the second one. The optimum conditions are: molar proportion of Cu, Mn, and Co being 1 : 1 : 1, temperature of calcination 700℃, drying at 100~C, temperature of water bath 85~C. The yield and selectivity of DPC in the process can reach 38% and 99% in the batch operation, respectively. The copper cobalt manganese mixed oxides chosen as the support contribute more to the high catalytic activity than the sol-gel method.展开更多
Zn-doped TiO2 (Zn?TiO2) thin films were prepared by the sol?gel method on titanium substrates with heat treatment at different temperatures. The effects of heat treatment temperatures and Zn doping on the structure, p...Zn-doped TiO2 (Zn?TiO2) thin films were prepared by the sol?gel method on titanium substrates with heat treatment at different temperatures. The effects of heat treatment temperatures and Zn doping on the structure, photocathodic protection and photoelectrochemical properties of TiO2 thin films were investigated. It is indicated that the photoelectrical performance of the Zn?TiO2 films is enhanced with the addition of Zn element compared with the pure-TiO2 film and the largest decline by 897 mV in the electrode potential is achieved under 300 °C heat treatment. SEM?EDS analyses show that Zn element is unevenly distributed in Zn?TiO2 films; XRD patterns reveal that the grain size of Zn?TiO2 is smaller than that of pure-TiO2; FTIR results indicate that Zn - O bond forms on Zn?TiO2 surface. Ultraviolet visible absorption spectra prove that Zn?TiO2 shifts to visible light region.Mott?Shottky curves show that the flat-band potential of Zn?TiO2 is more negative and charge carrier density is bigger than that ofpure-TiO2, implying that under the synergy of the width of the space-charge layer, carrier density and flat-band potential, Zn?TiO2 with 300 °C heat treatment displays the best photocathodic protection performance.展开更多
基金Projects(51162022,21201098)supported by the National Natural Science Foundation of ChinaProject(GJJ14126)supported by Jiangxi Provincial Education Department,ChinaProject(2012019)supported by the Test Foundation of Nanchang University,China
文摘The Nd-doped TiO2 thin films with higher hydrophilic and photocatalytic activities were prepared on glass slides by an acid-catalyzed sol?gel method. The effects of Nd doping on crystalline phase, surface composition and optical property were investigated by means of techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), optical contact angle tester and UV-Vis spectroscopy. The results show that Nd doping obviously influences the hydrophilic and photocatalytic activities of TiO2thin films. Nd doping could cause the TiO2 lattice distortion, inhibit phase transition from anatase to rutile, cause red shift of the absorption spectrum edge, produce hydroxyl radicals (·OH), and accelerate surface hydroxylation, which result in a significant improvement in the hydrophilicity and photoreactivity of Nd-doped TiO2 thin films. When the content of Nd is 0.1% (mass fraction), TiO2 thin films achieve the smallest grain size (about 15 nm), and the hydrophilic and photocatalytic activities of TiO2 thin film reach the maximum, the contact angle is only 8.1°, and 92% of methylene blue is finally degraded. Moreover, the modification mechanism of Nd doping was also discussed.
基金Project(xjj2011096)supported by the Fundamental Research Fund for the Central Universities,ChinaProject(201107)supported by the Open Project Program of State Key Laboratory of Metastable Materials Science and Technology,ChinaProject(50901058)supported by the National Natural Science Foundation of China
文摘Titania films with nano-sized pores were prepared on the NaOH?HCl pretreated NiTi alloy substrate by sol?gel method.A crack-free film is obtained for the sample with a dense inner layer and a porous outside layer(sample TC1+1).The X-ray diffraction shows that the titania films are composed of anatase,and a little Ni4Ti3 phase in the heat treated substrate is also detected.The X-ray photoelectron spectroscopy results indicate that the titania film completely covered the NiTi substrate for sample TC1+1.The sample TC1+1 is hydrophilic with a contact angle about 20°,and UV illumination treatment for 15 min further decreases the contact angle to(9.2±3.2)°.The potentiodynamic polarization test in 0.9% NaCl solution reveals a better corrosion resistance of sample TC1+1 than the polished NiTi sample.
基金Project(2010K10-21) supported by the Natural Science Foundation of Shaanxi Province,China
文摘The precursor sol of alumina was prepared by sol-gel method with aluminum nitrate and malic acid as raw materials.The effects of content of malic acid and polyvinylpyrrolidone (PVP) on sol spinnability were explored.The gel fibers with above 80 cm in length were obtained by mixing aluminum nitrate,malic acid and PVP on mass ratio of 10 3 1.5.Thermogravimetry-differential scanning calorimetry (TG-DSC),Fourier transform infrared (FTIR) spectrum,X-ray diffractometry (XRD),and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers.The alumina fibers with a smooth surface and about 20μm in diameter were obtained by sintering at 1 200℃,and their main phase was indentified to be α-Al2O3.
基金Project(2007BAQ01055)supported by the National Key Technology R&D Program of ChinaProject(2011SCU11081)supported by the Sichuan University Funds for Young Scientists,ChinaProject(20120181120103)supported by Ph.D.Programs Foundation of the Ministry of Education of China
文摘The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.
基金Project(2007CB2097050)supported by the National Basic Research Program of ChinaProject(20803035)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘A sol-gel method using lauric acid as surfactant was used to synthesize Li4Ti5O12 nanocrystals with an ultra-fine particle size distribution between 120 and 250 nm.In order to obtain the electrode materials with the best electrochemical performance,the content of lauric acid during Li4Ti5O12 synthesis was systematically studied.The physical and electrochemical properties of the synthesized samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),laser particle size analysis,alternating current impedance(AC) and galvanostatic charge-discharge experiments.The highly dispersed Li4Ti5O12 nanocrystals obtained at 800 ℃ for 10 h can deliver a specific capacity of 163.3 mA-h/g at 1C rate without obvious capacity fade up to 50 cycles.The results suggest that well dispersed Li4Ti5O12 nanocrystals shorten the Li-ion diffusion length and enhance the electrochemical kinetics of the samples,which are very crucial to high rate capability.
基金Project (51162026) supported by the National Natural Science Foundation of ChinaProjects (20100480949, 201104509) supported by China Postdoctoral Science FoundationProject (133274341015501) supported by Postdoctoral Science Foundation of Central South University, China
文摘Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.
文摘Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.
文摘Cu-excess CuxAlO2 ceramics with delafossite phases were synthesized using sol-gel. In the composition range of 1≤x〈1. 04,there are no detectable non-delafossite phases. Weak diffraction peaks of CuO are observed when x ≥1.04. The room temperature conductivity of the CU1.04AlO2 sample is improved by nearly an order of magnitude over that of the CuAlO2 sample. The major defect mechanism responsible for the conductivity enhancement is proposed to be substitution defects of CuAl (Cu^2 + ions substitute Al^3 + ions). The composition formula unit for Cu-excess Cux AlO2 may be expressed as Cu(All yCuy)O2.
基金Project(50902062)supported by the National Natural Science Foundation of ChinaProject(KKZ1200927002)supported by Key Programme of Kunming University of Science and Technology,China
文摘La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synthesized by sol-gel and coprecipitation methods, respectively. The structure, electrical transport properties and surface morphology of the targets and films were studied. It is found that, compared with coprecipitation method, the sol-gel target has more homogeneous components and larger density and grain size, thus the higher insulator-metal transition temperature and larger temperature coefficient of resistivity. The thin film prepared by sol-gel target has a uniform grain size and higher quality. The metal-insulator transition temperature is higher and the laser induced voltage signal is larger. Preparing the target by sol-gel method can largely improve the properties of corresponding thin films in pulsed laser deposition process.
基金Foundation item: Project (2007CB613607) support by the National Basic Research Program of ChinaProject (2010QZZD0101) supported by the Basic Research Foundation for the Chinese Central Universities
文摘Li2SiO3 was synthesized by combination of sol-gel method and calcination at high temperature using Li2CO3, HNO3, Si(OC2H5)4 and C2H5OH as starting materials. The effects of calcination temperature and refluxing system on the composition and properties of lithium silicate were investigated. The samples were characterized by TGA/DTA, XRD, SEM and particle size analysis. Li2FeSiO4 was prepared by the solid-state reaction between Li2SiO3 and FeC2O4·2H2O. The XRD patterns show that the use of refluxing system in the sol-gel preparation can decrease the Li2Si2O5 and Li4SiO4 impurities in the Li2SiO3 sample. The calcination temperature plays an important role in the properties of the Li2SiO3 samples. The sample calcined at 700 °C has high purity of 97% Li2SiO3 and good morphology as precursor of Li2FeSiO4. It consists of primary particles with size of 1-3 μm, and the primary particle clusters form agglomerates with loose and porous appearance.
基金Project(2009B010100001) supported by the Key Academic Program of the 3rd Phase "211 Project" of South China Agricultural University, ChinaProject(2007B030103019) supported by Guangdong Science and Technology Development Foundation, China
文摘Neodymium doping titania was loaded to silicon dioxide to prepare Nd/TiO2-SiO2 by sol-gel method and Nd/TiO2-SiO2 was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR) and diffuse reflectance spectra (DRS). Photocatalytic activities of Nd/TiO2-SiO2 with different neodymium contents were evaluated by degradation of methyl orange. The light absorption of Nd/TiO2-SiO2 increased with increasing doping neodymium in a visible light range of 388-619 nm, and Nd doping was in favor of decreasing the recombination of photo-generated electrons with holes. Nd and SiO2 improved the photocatalytic activity of TiO2. The optimal molar fraction of Nd to Ti was 0.1%, and the optimum calcination temperature was 600 ℃. The highest degradation rate of methyl orange was 82.9% after irradiation for 1 h.
基金Project (0991025) supported by Natural Science Foundation of Guangxi, ChinaProject (51164007) supported by the National Natural Science Foundation of ChinaProject (201101ZD008) supported by Educational Commission of Guangxi, China
文摘The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to characterize the properties of LiMnPO4/C. The XRD studies show that the pure olivine phase LiMnPO4 can be obtained at a low temperature of 500 °C. The SEM analyses illustrate that the citric acid used as the chelating reagent and carbon source can restrain the particle size of LiMnPO4/C well. The LiMnPO4/C sample synthesized at 500 °C for 10 h performs the highest initial discharge capacity of 122.6 mA-h/g, retaining 112.4 mA-h/g over 30 cycles at 0.05C rate. The citric acid based sol-gel method is favor to obtain the high electrochemical performance of LiMnPO4/C.
基金supported by the National Natural Science Foundation of China (21166015)~~
文摘A series of BiFeO3 and lanthanum‐doped BiFeO3 photocatalysts were synthesized by a facile sol‐gel method using citric acid as complexing agent, and used to remove phenol in industrial wastewater under simulated sunlight irradiation. The samples were characterized by X‐ray diffraction, energy dispersive spectroscopy, X‐ray photoelectron spectroscopy, UV‐Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The introduction of La effectively suppressed the generation of an impurity phase. All the metals (La, Bi and Fe) are well distributed. Under simulated sunlight irradiation, the La‐doped BiFeO3 photocatalysts exhibited superior photocatalytic activity to pure BiFeO3. The 15%La‐doped BiFeO3 photocatalyst exhibited the best activity, with a degradation rate of 96%and COD removal rate of 81.53%after irradiation for 180 min, and it showed good recycling stability. The enhanced photocatalytic ability of 15% La‐doped BiFeO3 was attributed to the in‐crease of adsorbed surface hydroxyl groups, enhancement of visible light absorption and reduction of electron‐hole recombination. We confirmed that the primary active species was -OH by adding different scavengers during the photodegradation of phenol and proposed a reaction mechanism based on these experiments.
基金Project (2009AA035002) supported by the High-tech Research and Development Program of China
文摘Erbium-doped BaTiO3 films on LaNiO3/Si substrates were fabricated by sol-gel method. The crystalline structure, morphologies and upconversion (UC) luminescence properties of films were respectively investigated by X-ray diffraction (XRD), atomic force microcopy (AFM) and photoluminescence (PL). The results indicate that both of the microstructure and luminescence are found to be dependent on Er^3+ substituting sites. The samples with A-site substitution have smaller lattice constants, larger grains and smoother surface than those with B-site substitution. The photoluminescence spectra show that both of the samples have two stronger green emission bands centered at 528 and 548 nm and a weak red emission band centered at 673 nm, which correspond to the relaxation of Er^3+ from ^2H11/2, ^4S3/2, and ^4F9/2 levels to the ground level ^4I15/2, respectively. Compared with B-site doped films, A-site doped films have a stronger integrated intensity of green emissions and a weaker relative intensity of red emissions. The differences could be explained by the crystalline quality and cross relaxation (CR) process.
基金Project(12JJ3017) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013GXNSFAA019304) supported by the Natural Science Foundation of Guangxi ProvinceProject(51364007) supported by the National Natural Science Foundation of China
文摘The Li3 2xMgxV2(PO4)3/C (x-=0, 0.01, 0.03 and 0.05) composites were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The XRD results reveal that a small amount of Mg2+ doping into Li sites does not significantly change the monoclinic structure of Li3V2(PO4)3, but Mg-doped Li3W2(PO4)3 has larger cell volume than the pristine Li3V2(PO4)3. All Mg-doped composites display better electrochemical performance than the pristine one, and Liz.94Mgo.03Vz(P04)3/C composite exhibits the highest capacity and the best cycle performance among all above-mentioned composites. The analysis of Li+ diffusion coefficients in Li3V2(PO4)3/C and Li2.94Mgo.03V2(P04)3/C indicates that rapid Li+ diffusion results from the doping of Mg2+ and the rapid Li+ diffusion is responsible for the better electrochemical performance of Mg-doped Li3V2(PO4)3/C composite cathode materials.
基金Projects (21207093,51004072) supported by the National Natural Science Foundation of China for YouthProject (LJQ2014023) supported by the Liaoning Excellent Talents in University,China+1 种基金Project (L20150178) supported by the General Scientific Research Projects Foundation of Liaoning Educational Committee,ChinaProject (N140303002) supported by the Fundamental Research Funds for the Central Universities,China
文摘To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vis DRS techniques.The results showed that single or double doping did not change the crystalline structure and morphology,but the particle size decreased with Ni doping.The band gap energy absorption edge of Ni-B-BiVO4shifted to a longer wavelength compared with undoped,B or Ni single doped BiVO4.More V4+and surface hydroxyl oxygen were observed in BiVO4after Ni-B co-doping.When the optimal mass fraction of Ni is0.30%,the degradation rate of MO in50min is95%for0.3Ni-B-BiVO4sample which also can effectively degrade methyl blue(MB),acid orange(AOII)II and rhodamine B(RhB).The enhanced photocatalytic activity is attributed to the synergistic effects of B and Ni doping.
基金Project (No. 2004C31044) supported by the Science & TechniqueProject of Zhejiang Province, China
文摘Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’.
文摘The support of catalyst for the direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction was prepared by the sol-gel method. Compared with activated charcoal, molecular sieve, porous ceramics, hopcalite, the support prepared by the sol-gel method has higher activity. The characterization of the support by X-ray diffraction (XRD) and transmission electron microscope (TEM) show that the mare crystal phase is Co2MnO4 and the average particle diameter is about 40 nm. The optimum conditions for synthesis of the support were determined by orthogonal experiments, which indicate that the proportion of Cu, Mn, and Co is the first important factor influencing the yield and selectivity of DPC. Temperature of calcination is the second one. The optimum conditions are: molar proportion of Cu, Mn, and Co being 1 : 1 : 1, temperature of calcination 700℃, drying at 100~C, temperature of water bath 85~C. The yield and selectivity of DPC in the process can reach 38% and 99% in the batch operation, respectively. The copper cobalt manganese mixed oxides chosen as the support contribute more to the high catalytic activity than the sol-gel method.
基金Project(cstc2011jj A50008)supported by the Natural Science Foundation of Chongqing,ChinaProject(14ZB0025)supported by Education Department of Sichuan Province,China
文摘Zn-doped TiO2 (Zn?TiO2) thin films were prepared by the sol?gel method on titanium substrates with heat treatment at different temperatures. The effects of heat treatment temperatures and Zn doping on the structure, photocathodic protection and photoelectrochemical properties of TiO2 thin films were investigated. It is indicated that the photoelectrical performance of the Zn?TiO2 films is enhanced with the addition of Zn element compared with the pure-TiO2 film and the largest decline by 897 mV in the electrode potential is achieved under 300 °C heat treatment. SEM?EDS analyses show that Zn element is unevenly distributed in Zn?TiO2 films; XRD patterns reveal that the grain size of Zn?TiO2 is smaller than that of pure-TiO2; FTIR results indicate that Zn - O bond forms on Zn?TiO2 surface. Ultraviolet visible absorption spectra prove that Zn?TiO2 shifts to visible light region.Mott?Shottky curves show that the flat-band potential of Zn?TiO2 is more negative and charge carrier density is bigger than that ofpure-TiO2, implying that under the synergy of the width of the space-charge layer, carrier density and flat-band potential, Zn?TiO2 with 300 °C heat treatment displays the best photocathodic protection performance.