采用溶胶–凝胶法在Pt/Ti/Si O2/Si基板上制备了Au-Ba Ti O3纳米复合薄膜,并且对其晶体结构、微观组织和介电性能进行了研究。结果表明,Au在复合薄膜中以直径为5~22 nm的Au纳米粒子弥散地分布在Ba Ti O3基体中。Au的添加量对复合薄膜的...采用溶胶–凝胶法在Pt/Ti/Si O2/Si基板上制备了Au-Ba Ti O3纳米复合薄膜,并且对其晶体结构、微观组织和介电性能进行了研究。结果表明,Au在复合薄膜中以直径为5~22 nm的Au纳米粒子弥散地分布在Ba Ti O3基体中。Au的添加量对复合薄膜的介电性能和表面形貌有很大影响,其最佳添加量约为5mol%。复合薄膜经过550℃的低温退火已经完全结晶为钙钛矿相,其介电常数与700℃退火的纯Ba Ti O3薄膜的相当。在Au-Ba Ti O3复合薄膜的结晶过程中,一方面,Au纳米粒子可能促进了中间相的分解;另一方面,Au纳米粒子诱发了钙钛矿相的异质形核,促进了Ba Ti O3的结晶化。因此,Au纳米粒子大幅度地降低了复合薄膜的退火温度,并显著提高了复合薄膜的介电性能。展开更多
文摘采用溶胶–凝胶法在Pt/Ti/Si O2/Si基板上制备了Au-Ba Ti O3纳米复合薄膜,并且对其晶体结构、微观组织和介电性能进行了研究。结果表明,Au在复合薄膜中以直径为5~22 nm的Au纳米粒子弥散地分布在Ba Ti O3基体中。Au的添加量对复合薄膜的介电性能和表面形貌有很大影响,其最佳添加量约为5mol%。复合薄膜经过550℃的低温退火已经完全结晶为钙钛矿相,其介电常数与700℃退火的纯Ba Ti O3薄膜的相当。在Au-Ba Ti O3复合薄膜的结晶过程中,一方面,Au纳米粒子可能促进了中间相的分解;另一方面,Au纳米粒子诱发了钙钛矿相的异质形核,促进了Ba Ti O3的结晶化。因此,Au纳米粒子大幅度地降低了复合薄膜的退火温度,并显著提高了复合薄膜的介电性能。
文摘采用溶胶-凝胶法制备锂离子电池正极材料Li Ni0.8Co0.15Al0.05O2,溶剂分别采用水、乙醇、乙二醇和丙三醇。通过TG/DSC进行样品的热性能分析,确定样品的烧结条件为550℃预处理6 h,750℃烧结24 h。XRD分析结果显示,采用有机溶剂制备的样品,018/110峰分裂明显,但向小角度偏移,说明样品的晶间距增大。SEM结果表明,采用有机溶剂制备的样品,平均颗粒尺寸0.4μm,小于采用水溶剂制备的样品颗粒尺寸0.5μm。采用乙醇与乙二醇为溶剂制备的样品出现了部分大尺寸的单晶颗粒。电化学性能测试结果表明,采用有机溶剂制备的样品的充放电性能要低于水作为溶剂的样品性能,但是采用乙醇作为溶剂制备的样品,首次放电容量(197.33 m Ah/g)与水作为溶剂(200.66 m Ah/g)制备的样品相当,并且在1C倍率下50次循环,容量保持率由水溶剂制备样品的87.1%增大至94.4%。大尺寸单晶颗粒的存在有利于NCA材料循环性能的提高。