Sodium manganese oxides,NaxMnO2+δ(x = 0.4,0.5,0.6,0.7,1.0;δ = 0-0.3),were synthesized by solid-state reaction routine combined with sol-gel process.The structure,morphology and electrochemical performances of as-pre...Sodium manganese oxides,NaxMnO2+δ(x = 0.4,0.5,0.6,0.7,1.0;δ = 0-0.3),were synthesized by solid-state reaction routine combined with sol-gel process.The structure,morphology and electrochemical performances of as-prepared samples were characterized by XRD,SEM,CV,EIS and galvanostatic charge/discharge experiments.It is found that Na0.6MnO2+δ and Na0.7MnO2+δ have high discharge capacity and good cycle performance.At a current density of 25 mA/g at the cutoff voltage of 2.0-4.3 V,Na0.6MnO2+δ gives the second discharge capacity of 188 mA·h/g and remains 77.9% of second discharge capacity after 40 cycles.Na0.7MnO2+δ exhibits the second discharge capacity of 176 mA·h/g and shows better cyclic stability;the capacity retention after 40 cycles is close to 85.5%.Even when the current density increases to 250 mA/g,the discharge capacity of Na0.7MnO2+δ still approaches to 107 mA·h/g after 40 cycles.展开更多
Micrometer-scale macroporous aluminosilicate catalyst was prepared via the sol-gel process. Results of catalytic cracking of 1, 3, 5-triisopropylbenzene showed that the synthesized aluminosilicate catalyst exhibited m...Micrometer-scale macroporous aluminosilicate catalyst was prepared via the sol-gel process. Results of catalytic cracking of 1, 3, 5-triisopropylbenzene showed that the synthesized aluminosilicate catalyst exhibited much higher activity than traditional ZSM-5 zeolite under the same condition. It is worth mentioning that the polymer product selectivity of aluminosilicate was much lower than that of ZSM-5, which might be useful for implementing the catalytic cracking process. The unique structure of macroporous aluminosilicate with interconnected-macropores and continuous skeletons was believed to be responsible for its excellent catalytic activity and low polymer product selectivity. Detailed discussion on the reaction pathway was also conducted.展开更多
In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In a...In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In addition,the thermal property and the microstructure of CPCM were also discussed in detail by means of polarization microscope and differential scanning calorimeter,respectively. According to the analysis of main influencial factors of the property of CPCM,the optimal preparing technique was determined. It was proved that CPCM could exhibit a good thermal property while phase transformation process took place,and a better appearance of the fabric modified with CPCM could be obtained due to the fact that in a warm circumstance,the liquid-state phase change material could be firmly enwrapped and embedded in the three-dimensional network all the time during the phase transformation. Besides,the fabric treated with CPCM had a high phase-transition enthalpy and an appropriate phase-transition temperature. As a result,a desirable temperature-adjustable function appeared.展开更多
Polysulfonamide(PSA)was synthesized at room temperature,the polymerization based on terephthaloyl chloride and 3,3’-diaminodiphenylsulfone in the common solvent N,N-Dimethyl-acetamide(DMAc).Polysulfonamide/titanium o...Polysulfonamide(PSA)was synthesized at room temperature,the polymerization based on terephthaloyl chloride and 3,3’-diaminodiphenylsulfone in the common solvent N,N-Dimethyl-acetamide(DMAc).Polysulfonamide/titanium oxide nanocomposites were prepared by sol-gel method.Tetrabutyl titanate(TBT)was added into the polysulfonamide solution,at the same time,some water was mixed to make the TBT hydrolyze.In the process,hydrochloric acid was used to catalyze the reaction.The polysulfonamide chemistry structure was characterized by FT-IR spectrum.Atomic force microscopy(AFM)was employed to observe the microstructure of the composite film.The thermal property was investigated by TGA.The results show that we have succeeded to synthesize the polysulfonamide,TiO2 particles were well distributed in the composite film and average size was about 20 nm on average,the heat-resistance of nanocomposite was batter than the pure polysulfonamide.展开更多
In this paper, preparation process of nano TiO2 with sol-gel method at low temperature was optimized by response surface method. The nano TiO2 was analysised by DRS and XRD. Result show that: 20mL tetrabutyl titanate...In this paper, preparation process of nano TiO2 with sol-gel method at low temperature was optimized by response surface method. The nano TiO2 was analysised by DRS and XRD. Result show that: 20mL tetrabutyl titanate, 10mL acetic acid, 6mL ethanol dosage, aging time was 29h, aging temperature was 36℃, Nano TiO2 was prepared under the condition. Particle size of nano particles was 37.3nm, Photodegradation rate was 90.2%. It had good photocatalytic ability.展开更多
Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for...Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for 2 h with a heating rate of 10℃/min to produce powders. Different interstitial amounts of TEA were added in the range of 0 mol% to 15 mol% of TiO2. The X-ray diffractrometer patterns show the TiO2 nanocomposites have a high anatase phase. It was also apparent that doped TEA has an effect on the crystallite size of TiO2 composite nanoparticles. The morphology of the composite powders was characterized by scanning electron microscope. The photocatalytic activity of Cu/TEA-doped TiO2 nanoparticles was evaluated through the degradation of methylene blue under UV irradiation. The results showed that 1 mol% TEA of TiO2 nanocomposites exhibited high photocatalytic activity and a small crystallite size.展开更多
Monophasic mullite gel with composition 3Al2O3·2SiO2 was prepared by the sol-gel method using aluminium nitrate nonahydrate, aluminium-tri-isopropoxide, and tetraethylorthosili-cate as reagents. Gels with differe...Monophasic mullite gel with composition 3Al2O3·2SiO2 was prepared by the sol-gel method using aluminium nitrate nonahydrate, aluminium-tri-isopropoxide, and tetraethylorthosili-cate as reagents. Gels with different drying control chemical additives(DCCAs) and polyvinylpyrrolidone(PVP) as spinning assistant were dried at several temperatures. The influences of temperature, DCCAs and PVP in the drying process were investigated. N,N-dimethylformamide(DMF) was the optimum DCCA at 70℃ in the drying process. PVP decreased the solvent volatilization speed and prevented gel crack to a certain extent. FTIR results revealed that free water, ethanol, and isopropanol were completely removed by the drying procedure.展开更多
基金Project(20871101) supported by the National Natural Science Foundation of ChinaProject(08A067) supported by Research Foundation of Education Bureau of Hunan Province,China
文摘Sodium manganese oxides,NaxMnO2+δ(x = 0.4,0.5,0.6,0.7,1.0;δ = 0-0.3),were synthesized by solid-state reaction routine combined with sol-gel process.The structure,morphology and electrochemical performances of as-prepared samples were characterized by XRD,SEM,CV,EIS and galvanostatic charge/discharge experiments.It is found that Na0.6MnO2+δ and Na0.7MnO2+δ have high discharge capacity and good cycle performance.At a current density of 25 mA/g at the cutoff voltage of 2.0-4.3 V,Na0.6MnO2+δ gives the second discharge capacity of 188 mA·h/g and remains 77.9% of second discharge capacity after 40 cycles.Na0.7MnO2+δ exhibits the second discharge capacity of 176 mA·h/g and shows better cyclic stability;the capacity retention after 40 cycles is close to 85.5%.Even when the current density increases to 250 mA/g,the discharge capacity of Na0.7MnO2+δ still approaches to 107 mA·h/g after 40 cycles.
基金Financial supports from the National Natural Science Foundation of China(No.20973022)
文摘Micrometer-scale macroporous aluminosilicate catalyst was prepared via the sol-gel process. Results of catalytic cracking of 1, 3, 5-triisopropylbenzene showed that the synthesized aluminosilicate catalyst exhibited much higher activity than traditional ZSM-5 zeolite under the same condition. It is worth mentioning that the polymer product selectivity of aluminosilicate was much lower than that of ZSM-5, which might be useful for implementing the catalytic cracking process. The unique structure of macroporous aluminosilicate with interconnected-macropores and continuous skeletons was believed to be responsible for its excellent catalytic activity and low polymer product selectivity. Detailed discussion on the reaction pathway was also conducted.
基金Fujian Province I mportant Science and Technology Development Fund,China (No.2005Z17)
文摘In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In addition,the thermal property and the microstructure of CPCM were also discussed in detail by means of polarization microscope and differential scanning calorimeter,respectively. According to the analysis of main influencial factors of the property of CPCM,the optimal preparing technique was determined. It was proved that CPCM could exhibit a good thermal property while phase transformation process took place,and a better appearance of the fabric modified with CPCM could be obtained due to the fact that in a warm circumstance,the liquid-state phase change material could be firmly enwrapped and embedded in the three-dimensional network all the time during the phase transformation. Besides,the fabric treated with CPCM had a high phase-transition enthalpy and an appropriate phase-transition temperature. As a result,a desirable temperature-adjustable function appeared.
文摘Polysulfonamide(PSA)was synthesized at room temperature,the polymerization based on terephthaloyl chloride and 3,3’-diaminodiphenylsulfone in the common solvent N,N-Dimethyl-acetamide(DMAc).Polysulfonamide/titanium oxide nanocomposites were prepared by sol-gel method.Tetrabutyl titanate(TBT)was added into the polysulfonamide solution,at the same time,some water was mixed to make the TBT hydrolyze.In the process,hydrochloric acid was used to catalyze the reaction.The polysulfonamide chemistry structure was characterized by FT-IR spectrum.Atomic force microscopy(AFM)was employed to observe the microstructure of the composite film.The thermal property was investigated by TGA.The results show that we have succeeded to synthesize the polysulfonamide,TiO2 particles were well distributed in the composite film and average size was about 20 nm on average,the heat-resistance of nanocomposite was batter than the pure polysulfonamide.
文摘In this paper, preparation process of nano TiO2 with sol-gel method at low temperature was optimized by response surface method. The nano TiO2 was analysised by DRS and XRD. Result show that: 20mL tetrabutyl titanate, 10mL acetic acid, 6mL ethanol dosage, aging time was 29h, aging temperature was 36℃, Nano TiO2 was prepared under the condition. Particle size of nano particles was 37.3nm, Photodegradation rate was 90.2%. It had good photocatalytic ability.
文摘Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for 2 h with a heating rate of 10℃/min to produce powders. Different interstitial amounts of TEA were added in the range of 0 mol% to 15 mol% of TiO2. The X-ray diffractrometer patterns show the TiO2 nanocomposites have a high anatase phase. It was also apparent that doped TEA has an effect on the crystallite size of TiO2 composite nanoparticles. The morphology of the composite powders was characterized by scanning electron microscope. The photocatalytic activity of Cu/TEA-doped TiO2 nanoparticles was evaluated through the degradation of methylene blue under UV irradiation. The results showed that 1 mol% TEA of TiO2 nanocomposites exhibited high photocatalytic activity and a small crystallite size.
文摘Monophasic mullite gel with composition 3Al2O3·2SiO2 was prepared by the sol-gel method using aluminium nitrate nonahydrate, aluminium-tri-isopropoxide, and tetraethylorthosili-cate as reagents. Gels with different drying control chemical additives(DCCAs) and polyvinylpyrrolidone(PVP) as spinning assistant were dried at several temperatures. The influences of temperature, DCCAs and PVP in the drying process were investigated. N,N-dimethylformamide(DMF) was the optimum DCCA at 70℃ in the drying process. PVP decreased the solvent volatilization speed and prevented gel crack to a certain extent. FTIR results revealed that free water, ethanol, and isopropanol were completely removed by the drying procedure.