Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns reveal...Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.展开更多
The effective radiative forcing (ERF) and associated surface air temperature change over eastern China are estimated using multi-model results from CMIP5 (Coupled Model Intercomparison Project Phase 5). The model ...The effective radiative forcing (ERF) and associated surface air temperature change over eastern China are estimated using multi-model results from CMIP5 (Coupled Model Intercomparison Project Phase 5). The model results show that, relative to 1850, the multi-model and annual mean aerosol ERF for the year 2005 is -4.14 W m^-2 at the top of the atmosphere over eastern China (20°-45°N, 105°-122.5°E). As a result of this ERF, the multi-model and annual mean surface air temperature change in eastern China during 1850-2005 is -1.05℃, leading to a climate sensitivity of 0.24℃/ (Wm^-2) in this region.展开更多
In this study the authors apply the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to examine the impacts of black carbon (BC)-induced changes in snow albedo on simulated temperature an...In this study the authors apply the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to examine the impacts of black carbon (BC)-induced changes in snow albedo on simulated temperature and precipitation during the severe snowstorm that occurred in southern China during 0800 26 January to 0800 29 January 2008 (Note that all times are local time except when otherwise stated). Black carbon aerosol was simulated online within the WRF-Chem. The model resuits showed that surface-albedo, averaged over 27-28 January, can be reduced by up to 10% by the deposition of BC. As a result, relative to a simulation that does not consider deposition of BC on snow/ice, the authors predicted surface air temperatures during 27-28 January can differ by -1.95 to 2.70 K, and the authors predicted accumulated precipitation over 27-28 January can differ by -2.91 to 3.10 mm over Areas A and B with large BC deposition. Different signs of changes are determined by the feedback of clouds and by the availability of water vapor in the atmosphere.展开更多
In this study, we used the NCAR CAM3.0 model to study the climate effects of both decadal global Sea Surface Temperature(SST) changing and the increasing aerosol concentration in East Asia in boreal spring. In the dec...In this study, we used the NCAR CAM3.0 model to study the climate effects of both decadal global Sea Surface Temperature(SST) changing and the increasing aerosol concentration in East Asia in boreal spring. In the decadal SST changing experiment, a prominent sea surface cyclone anomaly occurred west of the Northwest Pacific warming SST. The cyclone anomaly is conductive to anomalous rising motion and more rainfall over the Northwest Pacific and southeast coast areas of China, but less rainfall in central China. Caused by the only aerosol concentration increasing, the change of climate in East Asia is totally different from that induced by the regime shift of SST around 1976/77 with the same model. The sulfate and black carbon aerosol concentrations were doubled respectively and synchronously in East Asia(20?–50?N, 100?–150?E) to investigate the climate effects of these two major aerosol types in three experiments. The results show that, in all three aerosol concentration changing experiments, the rainfall during boreal spring increases in North China and decreases in central China. It's worth noting that in the DTWO experiment, the rainfall diminishes in central China while it increases in the north and southeast coast areas of China, which is similar to observations. From the vertical profile between 110?E and 120?E, it is found that sulfate and black carbon aerosols first change the temperature of lower troposphere owing to their direct radiative effect, and then induce secondary meridional circulation anomaly through the different dynamic mechanisms involved, and at last generate precipitation and surface temperature anomalous patterns mentioned above.展开更多
Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity.In this paper,V-doped samples La10-xVx(SiO4) 6O3+x(0≤x≤1.5) were prepared by sol-gel method and t...Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity.In this paper,V-doped samples La10-xVx(SiO4) 6O3+x(0≤x≤1.5) were prepared by sol-gel method and the influences of V-dopant content on calcining temperature and conductivity were reported.The samples were characterized by thermal analysis(TG-DSC) ,X-ray diffraction(XRD) and scanning electron micrograph(SEM) . The apatite was obtained at 800°C,a relatively low temperature in comparison to 1500°C with the conventional solid-state method.The ceramic pellets sintered at 1200°C for 5 h showed a higher relative density than La9.33Si6O26 pellets sintered at 1400°C for 20 h.The conductivities of samples were measured by electrochemical impedance spectroscopy.The conductivity was improved with the increase of V-dopant content on La site.展开更多
Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different ro...Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different routes of KCl solution droplets. In traditional generators, the solution droplets travel through one cylinder; while in the case analyzed here, after spray atomization, the droplets travel through two cylinders in series. The first cylinder was fed with warm air and the second one with cold air. In such way, the complete evaporation of the water from the droplets can be ensured. The influencing factors of the generated aerosol size distribution were investigated. The data measured show that the concentration of generated aerosol becomes higher both increasing the flow rate of the KCI solution injected in the first cylinder and increasing the concentration in the solution. The temperature of solution influences mainly the generation of smaller KCI particles (0,3-3 μm). The amount of hot air used in the generation process increases the concentration of larger KC1 particles (〉3 μm) while cold air does not have the same effect. The aerosol generator is able to generate KC1 aerosol stably. This instrument can be used effectively for testing air filters for automotive.展开更多
In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In a...In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In addition,the thermal property and the microstructure of CPCM were also discussed in detail by means of polarization microscope and differential scanning calorimeter,respectively. According to the analysis of main influencial factors of the property of CPCM,the optimal preparing technique was determined. It was proved that CPCM could exhibit a good thermal property while phase transformation process took place,and a better appearance of the fabric modified with CPCM could be obtained due to the fact that in a warm circumstance,the liquid-state phase change material could be firmly enwrapped and embedded in the three-dimensional network all the time during the phase transformation. Besides,the fabric treated with CPCM had a high phase-transition enthalpy and an appropriate phase-transition temperature. As a result,a desirable temperature-adjustable function appeared.展开更多
A novel sol-gel processing was developed to synthesize polycrystalline cerium-doped lutetium pyrosilicate (Lu2Si2O7Ce, LPS :Ce) powders under low temperature. It was found that the addition of propylene oxide (PPO...A novel sol-gel processing was developed to synthesize polycrystalline cerium-doped lutetium pyrosilicate (Lu2Si2O7Ce, LPS :Ce) powders under low temperature. It was found that the addition of propylene oxide (PPO) could promote the formation of Lu-O-Si bonds in precursor, which was beneficial to the formation of LPS phase. X-ray diffraction (XRD) patterns indicated that the single-phased LPS powder was well crystallized at 1050℃. Microstructure observation demonstrated that the synthetic LPS powder was composed of ellipsoidal grains with the mean size of 40 nm. The luminescent properties were characterized by photoluminescence (PL), X-ray excited luminescence (XEL) and vacuum ultraviolet (VUV) spectroscopy at room temperature. The synthetic LPS:Ce powder emitted a broad emission spectrum centered at about 380 nm, which should be ascribed to the 5d→4f transition of Ce3+. Decay time of the synthetic LPS:Ce powder was measured to be only 32 ns.展开更多
A new kind of organic-inorganic hybrid HfO2/SiO2 sol-gel material with a large thermo-optic coefficient and a wide linear tunable temperature range has been developed for fabrication of a long period waveguide grating...A new kind of organic-inorganic hybrid HfO2/SiO2 sol-gel material with a large thermo-optic coefficient and a wide linear tunable temperature range has been developed for fabrication of a long period waveguide grating (LPWG) filter, whose parameters were optimized and designed by using finite difference time domain (FDTD) simulations. The LPWG filter, a periodic rectangle-corrugated grating structure, was easily fabricated with soft-lithography technique. At a temperature range from 19~C to 70~C, the fabricated LPWG filter element demonstrated a high temperature sensitivity of about 6.5 nm/~C and a wide linear tunable temperature range of 51℃, so that it can be used as a precise thermometer. Our results are useful for the designs of LPWG filters for the implementation of a wide range of thermo-optic functions.展开更多
SnS-C composite powders were prepared through one-pot spray pyrolysis for use as anode materials for Na-ion batteries. C microspheres with uniformly attached cubic-like SnS nanocrystals, which have an amorphous C coat...SnS-C composite powders were prepared through one-pot spray pyrolysis for use as anode materials for Na-ion batteries. C microspheres with uniformly attached cubic-like SnS nanocrystals, which have an amorphous C coating layer, were formed at a preparation temperature of 900 ℃. The initial discharge capacities of the bare SnS and SnS-C composite powders at a current density of 500 mA·g^-1 were 695 and 740 mA·h·g^-1, respectively. The discharge capacities after 50 cycles and the capacity retentions measured from the second cycle of the bare SnS and SnS-C composite powders were 25 and 433 mA.h.g-1 and 5 and 89%, respectively. The prepared SnS-C composite powders with high reversible capacities and good cycle performance can be used as Na-ion battery anode materials.展开更多
Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth...Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth system model of intermediate complexity,to investigate the contributions of climate forcings(e.g.solar insolation variability,anomalous volcanic aerosols,greenhouse gas,solar orbital change,land cover changes,and anthropogenic sulfate aerosols) to surface air temperature over East China in the past millennium.The simulation of the UVic Model could reproduce the three main characteristic periods(e.g.the Medieval Warm Period(MWP),the Little Ice Age(LIA),and the 20th Century Warming Period(20CWP)) of the northern hemisphere and East China,which were consistent with the corresponding reconstructed air temperatures at century scales.The simulation result reflected that the air temperature anomalies of East China were larger than those of the global air temperature during the MWP and the first half of 20CWP and were lower than those during the LIA.The surface air temperature of East China over the past millennium has been divided into three periods in the MWP,four in the LIA,and one in the 20CWP.The MWP of East China was caused primarily by solar insolation and secondarily by volcanic aerosols.The variation of the LIA was dominated by the individual sizes of the contribution of solar insolation variability,greenhouse gas,and volcano aerosols.Greenhouse gas and volcano aerosols were the main forcings of the third and fourth periods of the LIA,respectively.We examined the nonlinear responses among the natural and anthropogenic forcings in terms of surface air temperature over East China.The nonlinear responses between the solar orbit change and anomalous volcano aerosols and those between the greenhouse gases and land cover change(or anthropogenic sulfate aerosols) all contributed approximately 0.2℃ by the end of 20th century.However,the output of the energy-moisture balance atmospheric model from UVic showed no obvious nonlinear responses between anthropogenic and natural forcings.The nonlinear responses among all the climate forcings(both anthropogenic and natural forcings) contributed to a temperature increase of approximately 0.27℃ at the end of the 20th century,accounting for approximately half of the warming during this period;the remainder was due to the climate forcings themselves.展开更多
文摘Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.
基金supported by the National Basic Research Program of China[973 Program,grant number 2014CB441202]the National Natural Science Foundation of China[grant numbers41475137 and 91544219]
文摘The effective radiative forcing (ERF) and associated surface air temperature change over eastern China are estimated using multi-model results from CMIP5 (Coupled Model Intercomparison Project Phase 5). The model results show that, relative to 1850, the multi-model and annual mean aerosol ERF for the year 2005 is -4.14 W m^-2 at the top of the atmosphere over eastern China (20°-45°N, 105°-122.5°E). As a result of this ERF, the multi-model and annual mean surface air temperature change in eastern China during 1850-2005 is -1.05℃, leading to a climate sensitivity of 0.24℃/ (Wm^-2) in this region.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant KZCX2-YW-205)the National Natural Science Foundation of China (Grant Nos.40825016,90711004,and 40775083)
文摘In this study the authors apply the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to examine the impacts of black carbon (BC)-induced changes in snow albedo on simulated temperature and precipitation during the severe snowstorm that occurred in southern China during 0800 26 January to 0800 29 January 2008 (Note that all times are local time except when otherwise stated). Black carbon aerosol was simulated online within the WRF-Chem. The model resuits showed that surface-albedo, averaged over 27-28 January, can be reduced by up to 10% by the deposition of BC. As a result, relative to a simulation that does not consider deposition of BC on snow/ice, the authors predicted surface air temperatures during 27-28 January can differ by -1.95 to 2.70 K, and the authors predicted accumulated precipitation over 27-28 January can differ by -2.91 to 3.10 mm over Areas A and B with large BC deposition. Different signs of changes are determined by the feedback of clouds and by the availability of water vapor in the atmosphere.
基金supported by the National Key Program for Developing Basic Science(Nos.2010CB428504,2012 CB956002)the National Natural Science Foundation of China(Nos.40906005,41105059,41065005,41176004,GYHY201106017,GYHY201206027)the National Key Technologies R&D Program of China(No.2009BAC 51B01)
文摘In this study, we used the NCAR CAM3.0 model to study the climate effects of both decadal global Sea Surface Temperature(SST) changing and the increasing aerosol concentration in East Asia in boreal spring. In the decadal SST changing experiment, a prominent sea surface cyclone anomaly occurred west of the Northwest Pacific warming SST. The cyclone anomaly is conductive to anomalous rising motion and more rainfall over the Northwest Pacific and southeast coast areas of China, but less rainfall in central China. Caused by the only aerosol concentration increasing, the change of climate in East Asia is totally different from that induced by the regime shift of SST around 1976/77 with the same model. The sulfate and black carbon aerosol concentrations were doubled respectively and synchronously in East Asia(20?–50?N, 100?–150?E) to investigate the climate effects of these two major aerosol types in three experiments. The results show that, in all three aerosol concentration changing experiments, the rainfall during boreal spring increases in North China and decreases in central China. It's worth noting that in the DTWO experiment, the rainfall diminishes in central China while it increases in the north and southeast coast areas of China, which is similar to observations. From the vertical profile between 110?E and 120?E, it is found that sulfate and black carbon aerosols first change the temperature of lower troposphere owing to their direct radiative effect, and then induce secondary meridional circulation anomaly through the different dynamic mechanisms involved, and at last generate precipitation and surface temperature anomalous patterns mentioned above.
基金Supported by the Joint Funds of NSFC-Guangdong of China(U0834004)the Natural Science Foundation of Guangdong Province(06025657)
文摘Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity.In this paper,V-doped samples La10-xVx(SiO4) 6O3+x(0≤x≤1.5) were prepared by sol-gel method and the influences of V-dopant content on calcining temperature and conductivity were reported.The samples were characterized by thermal analysis(TG-DSC) ,X-ray diffraction(XRD) and scanning electron micrograph(SEM) . The apatite was obtained at 800°C,a relatively low temperature in comparison to 1500°C with the conventional solid-state method.The ceramic pellets sintered at 1200°C for 5 h showed a higher relative density than La9.33Si6O26 pellets sintered at 1400°C for 20 h.The conductivities of samples were measured by electrochemical impedance spectroscopy.The conductivity was improved with the increase of V-dopant content on La site.
基金Project(2010EME006) supported by Open Fund of the Key Laboratory of Environmental Medicine Engineering of Ministry of Education of China Project(51008063) supported by the National Natural Science Foundation of China+1 种基金 Project(3203000601) supported by the Postdoctoral Key Research Program from Southeast University, China Project(2011BAJ03B05) supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan Period of China
文摘Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different routes of KCl solution droplets. In traditional generators, the solution droplets travel through one cylinder; while in the case analyzed here, after spray atomization, the droplets travel through two cylinders in series. The first cylinder was fed with warm air and the second one with cold air. In such way, the complete evaporation of the water from the droplets can be ensured. The influencing factors of the generated aerosol size distribution were investigated. The data measured show that the concentration of generated aerosol becomes higher both increasing the flow rate of the KCI solution injected in the first cylinder and increasing the concentration in the solution. The temperature of solution influences mainly the generation of smaller KCI particles (0,3-3 μm). The amount of hot air used in the generation process increases the concentration of larger KC1 particles (〉3 μm) while cold air does not have the same effect. The aerosol generator is able to generate KC1 aerosol stably. This instrument can be used effectively for testing air filters for automotive.
基金Fujian Province I mportant Science and Technology Development Fund,China (No.2005Z17)
文摘In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In addition,the thermal property and the microstructure of CPCM were also discussed in detail by means of polarization microscope and differential scanning calorimeter,respectively. According to the analysis of main influencial factors of the property of CPCM,the optimal preparing technique was determined. It was proved that CPCM could exhibit a good thermal property while phase transformation process took place,and a better appearance of the fabric modified with CPCM could be obtained due to the fact that in a warm circumstance,the liquid-state phase change material could be firmly enwrapped and embedded in the three-dimensional network all the time during the phase transformation. Besides,the fabric treated with CPCM had a high phase-transition enthalpy and an appropriate phase-transition temperature. As a result,a desirable temperature-adjustable function appeared.
基金supported by the National Natural Science Foundation of China(Grant No.51172139)
文摘A novel sol-gel processing was developed to synthesize polycrystalline cerium-doped lutetium pyrosilicate (Lu2Si2O7Ce, LPS :Ce) powders under low temperature. It was found that the addition of propylene oxide (PPO) could promote the formation of Lu-O-Si bonds in precursor, which was beneficial to the formation of LPS phase. X-ray diffraction (XRD) patterns indicated that the single-phased LPS powder was well crystallized at 1050℃. Microstructure observation demonstrated that the synthetic LPS powder was composed of ellipsoidal grains with the mean size of 40 nm. The luminescent properties were characterized by photoluminescence (PL), X-ray excited luminescence (XEL) and vacuum ultraviolet (VUV) spectroscopy at room temperature. The synthetic LPS:Ce powder emitted a broad emission spectrum centered at about 380 nm, which should be ascribed to the 5d→4f transition of Ce3+. Decay time of the synthetic LPS:Ce powder was measured to be only 32 ns.
基金supported by the Natural Science Foundation of Guangdong Province,China (Grant Nos. 8251063101000007,10151063101000009 and 9451063101002082)the Scientific & Technological Plan of Guangdong Province (Grant Nos. 2008B010200004,2010B010600030 and 2009B011100003)+4 种基金the National Natural Science Foundation of China (Grant Nos. 61078046 and 10904042)the Key Project of Chinese Ministry of Education (Grant No. 210157)the Scientific & Technological Project of Education Department of Hubei Province (Grant No. D20101104)the Fundamental Research Funds for the Central Universities (Grant No. HUST 2010MS069)Program for New Century Excellent Talents in University,China (Grant No. 07-0319)
文摘A new kind of organic-inorganic hybrid HfO2/SiO2 sol-gel material with a large thermo-optic coefficient and a wide linear tunable temperature range has been developed for fabrication of a long period waveguide grating (LPWG) filter, whose parameters were optimized and designed by using finite difference time domain (FDTD) simulations. The LPWG filter, a periodic rectangle-corrugated grating structure, was easily fabricated with soft-lithography technique. At a temperature range from 19~C to 70~C, the fabricated LPWG filter element demonstrated a high temperature sensitivity of about 6.5 nm/~C and a wide linear tunable temperature range of 51℃, so that it can be used as a precise thermometer. Our results are useful for the designs of LPWG filters for the implementation of a wide range of thermo-optic functions.
文摘SnS-C composite powders were prepared through one-pot spray pyrolysis for use as anode materials for Na-ion batteries. C microspheres with uniformly attached cubic-like SnS nanocrystals, which have an amorphous C coating layer, were formed at a preparation temperature of 900 ℃. The initial discharge capacities of the bare SnS and SnS-C composite powders at a current density of 500 mA·g^-1 were 695 and 740 mA·h·g^-1, respectively. The discharge capacities after 50 cycles and the capacity retentions measured from the second cycle of the bare SnS and SnS-C composite powders were 25 and 433 mA.h.g-1 and 5 and 89%, respectively. The prepared SnS-C composite powders with high reversible capacities and good cycle performance can be used as Na-ion battery anode materials.
基金supported by the Major Project of National Natural Science Foundation of China (Grant No. 40890052)National Basic Research Progam of China (Grant No. 2007CB815901)+1 种基金National Natural Science Foundation of China (Grant No. 40805036)the Basic Research Fund of CAMS
文摘Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth system model of intermediate complexity,to investigate the contributions of climate forcings(e.g.solar insolation variability,anomalous volcanic aerosols,greenhouse gas,solar orbital change,land cover changes,and anthropogenic sulfate aerosols) to surface air temperature over East China in the past millennium.The simulation of the UVic Model could reproduce the three main characteristic periods(e.g.the Medieval Warm Period(MWP),the Little Ice Age(LIA),and the 20th Century Warming Period(20CWP)) of the northern hemisphere and East China,which were consistent with the corresponding reconstructed air temperatures at century scales.The simulation result reflected that the air temperature anomalies of East China were larger than those of the global air temperature during the MWP and the first half of 20CWP and were lower than those during the LIA.The surface air temperature of East China over the past millennium has been divided into three periods in the MWP,four in the LIA,and one in the 20CWP.The MWP of East China was caused primarily by solar insolation and secondarily by volcanic aerosols.The variation of the LIA was dominated by the individual sizes of the contribution of solar insolation variability,greenhouse gas,and volcano aerosols.Greenhouse gas and volcano aerosols were the main forcings of the third and fourth periods of the LIA,respectively.We examined the nonlinear responses among the natural and anthropogenic forcings in terms of surface air temperature over East China.The nonlinear responses between the solar orbit change and anomalous volcano aerosols and those between the greenhouse gases and land cover change(or anthropogenic sulfate aerosols) all contributed approximately 0.2℃ by the end of 20th century.However,the output of the energy-moisture balance atmospheric model from UVic showed no obvious nonlinear responses between anthropogenic and natural forcings.The nonlinear responses among all the climate forcings(both anthropogenic and natural forcings) contributed to a temperature increase of approximately 0.27℃ at the end of the 20th century,accounting for approximately half of the warming during this period;the remainder was due to the climate forcings themselves.