To convert the non biodegradable sodium lignin sulfonate into biodegradable substances, the sodium lignin sulfonate in the water was ozonized and the pH value, dissolved organic carbon(DOC), ultraviolet absorbency at...To convert the non biodegradable sodium lignin sulfonate into biodegradable substances, the sodium lignin sulfonate in the water was ozonized and the pH value, dissolved organic carbon(DOC), ultraviolet absorbency at λ =254 nm(UVA) and the biodegradability of the ozonation effluent were measured. The non biodegradable sodium lignin sulfonate can be partly converted into biodegradable substances by ozonation (about 38 76%). In the ozonation process, there is little DOC decrease, but much UVA decrease and obvious pH drop.展开更多
An incubation experiment(Exp. 1) with three soils, two from Australia and one from Norway, was carried out to investigate the fate of dissolved BorreGro(a lignosulfonate, produced by Borregaard LignoTech Company, Norw...An incubation experiment(Exp. 1) with three soils, two from Australia and one from Norway, was carried out to investigate the fate of dissolved BorreGro(a lignosulfonate, produced by Borregaard LignoTech Company, Norway) at different concentrations(0, 10 and 100 mg C L-1) in soil solutions. A rhizobox experiment(Exp. 2) was also done in a Norwegian clay soil, mixed with four levels of BorreGro-carbon(BG-C) added(0, 2, 20 and 200 mg BG-C kg-1) to test the impact of BorreGro on root growth, rhizosphere chemistry(pH, metals and dissolved organic carbon(DOC)) and the composition of phospholipid fatty acids(PLFAs). The BorreGro addition increased the concentration of Mn due to the high concentrations in BorreGro. The BorreGro addition to soil had an indirect but significant impact on the rhizosphere chemistry and PLFAs. The lowest amounts of added BorreGro facilitated the DOC excretion at plant roots, and thereby increased the bacterial and fungal biomass, likely as an effect of increased Mn solubility from BorreGro in the root zone.展开更多
The objective of this study is to determine the properties of G. amplexifolia. In this paper; the chemical composition, including holocellulose, acid-insoluble lignin, 1% NaOH solubility, benzene-ethanol extractives a...The objective of this study is to determine the properties of G. amplexifolia. In this paper; the chemical composition, including holocellulose, acid-insoluble lignin, 1% NaOH solubility, benzene-ethanol extractives and ash content, was considered for the variability with respect to positions along bamboo culm height (bottom, middle and top), parts along radial direction (inner part and outer part)and ages (1-year and 2- year). The test results were also compared to those of moso that is commonly planted and used in China. This study indicated that both the holocellulosecontent and the lignin content in inner part were lower than ; in outer part, but for extractives and ash content, the reverse was true. Bamboo age also had effect on chemical composition; both the holocellulose content and the ash content in the culm of 1- year were higher than those of 2-year; while the lignin content and the extractive content m the culm of 1- year were higher than those of 2-year. High holocellulose content, low lignin contentand extractive content were advantages of G. amplexifolia.展开更多
文摘To convert the non biodegradable sodium lignin sulfonate into biodegradable substances, the sodium lignin sulfonate in the water was ozonized and the pH value, dissolved organic carbon(DOC), ultraviolet absorbency at λ =254 nm(UVA) and the biodegradability of the ozonation effluent were measured. The non biodegradable sodium lignin sulfonate can be partly converted into biodegradable substances by ozonation (about 38 76%). In the ozonation process, there is little DOC decrease, but much UVA decrease and obvious pH drop.
基金Support by the Borregaard LignoTech Company,Norway
文摘An incubation experiment(Exp. 1) with three soils, two from Australia and one from Norway, was carried out to investigate the fate of dissolved BorreGro(a lignosulfonate, produced by Borregaard LignoTech Company, Norway) at different concentrations(0, 10 and 100 mg C L-1) in soil solutions. A rhizobox experiment(Exp. 2) was also done in a Norwegian clay soil, mixed with four levels of BorreGro-carbon(BG-C) added(0, 2, 20 and 200 mg BG-C kg-1) to test the impact of BorreGro on root growth, rhizosphere chemistry(pH, metals and dissolved organic carbon(DOC)) and the composition of phospholipid fatty acids(PLFAs). The BorreGro addition increased the concentration of Mn due to the high concentrations in BorreGro. The BorreGro addition to soil had an indirect but significant impact on the rhizosphere chemistry and PLFAs. The lowest amounts of added BorreGro facilitated the DOC excretion at plant roots, and thereby increased the bacterial and fungal biomass, likely as an effect of increased Mn solubility from BorreGro in the root zone.
文摘The objective of this study is to determine the properties of G. amplexifolia. In this paper; the chemical composition, including holocellulose, acid-insoluble lignin, 1% NaOH solubility, benzene-ethanol extractives and ash content, was considered for the variability with respect to positions along bamboo culm height (bottom, middle and top), parts along radial direction (inner part and outer part)and ages (1-year and 2- year). The test results were also compared to those of moso that is commonly planted and used in China. This study indicated that both the holocellulosecontent and the lignin content in inner part were lower than ; in outer part, but for extractives and ash content, the reverse was true. Bamboo age also had effect on chemical composition; both the holocellulose content and the ash content in the culm of 1- year were higher than those of 2-year; while the lignin content and the extractive content m the culm of 1- year were higher than those of 2-year. High holocellulose content, low lignin contentand extractive content were advantages of G. amplexifolia.