AThe wastewater source of 4# tailing pond in Dexing copper mine consists of alkaline flotation pulp and acid mine drainage (AMD) from the nearby opencast mine. Therefore, the heavy metals in tailing ore are very lik...AThe wastewater source of 4# tailing pond in Dexing copper mine consists of alkaline flotation pulp and acid mine drainage (AMD) from the nearby opencast mine. Therefore, the heavy metals in tailing ore are very likely to be released due to acidification from AMD. The leaching behaviors ofZn, Cu, Fe and Mn in mine tailings from Dexing copper mine were investigated by a series of laboratory batch experiments. The effectcs ofpH, temperature, particle size and contact time on the leachability of such heavy metals were examined. It was evident that Zn, Cu, Fe and Mn were major heavy metals in the tailings while gangue minerals like quartz were major constituents in examined tailings. The tailing dissolution reaction was controlled by the acid, whose kinetics could be expressed according to the heterogeneous reaction models and explained by a shrinking core model with the surface chemical reaction as the rate-controlling step. The leachability of all metals examined depended on pH and contact time. The batch studies indicated that the maximum leaching ratios ofZn, Cu, Fe and Mn at pH 2.0 were 5.4%, 5.8%, l 1.1% and 34.1%, respectively. The dissolubility of all metals examined was positively correlated to the temperatures. The particle size would not change dissolution tendency of those heavy metals, but decrease the concentrations of leached heavy metals.展开更多
The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was mu...The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was much easier to be oxidized rather than to be reduced, and chalcopyrite was difficult to be both oxidized and reduced. The relatively higher copper extraction of bornite dissolution can be attributed to its higher oxidation rate. Covellite(CuS) was detected as the intermediate species during the dissolution processes of both bornite and chalcopyrite. Bornite dissolution was preferred to be a direct oxidation pathway, in which bornite was directly oxidized to covellite(CuS) and cupric ions, and the formed covellite(CuS) may inhibit the further dissolution. Chalcopyrite dissolution was preferred to be a continuous reduction-oxidation pathway, in which chalcopyrite was initially reduced to bornite, then oxidized to covellite(CuS), and the initial reduction reaction was the rate-limiting step.展开更多
The addition of NaCl in the ammonium persulfate-APS(as an oxidant)leaching was investigated.APS has some advantages compared with conventional oxidants and its standard redox potential(E°)is2.0V.Effect of six par...The addition of NaCl in the ammonium persulfate-APS(as an oxidant)leaching was investigated.APS has some advantages compared with conventional oxidants and its standard redox potential(E°)is2.0V.Effect of six parameters such as NaCl concentration,APS concentration,temperature,time,liquid–solid ration(L/S),and stirring speed on the leaching behavior was studied.Results showed that metals extraction increased with increasing of NaCl concentration,APS concentration,leaching temperature(up to333K),and L/S ratio.During oxidative leaching of sulfide minerals,the occurrence of elemental sulfur layer on particle surface is known as primary problem that causes low metal extraction.According to the results,the passivation effect of sulfur layer and low dissolution problems can be eliminated in the presence of chloride ions.Copper and iron extraction yields were obtained as75%and80%,respectively under leaching conditions as follows:APS concentration250g/L;NaCl concentration150g/L;time180min;temperature333K;stirring speed400r/min;and L/S250mL/g.展开更多
Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions...Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.展开更多
Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated ...Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated water and soil. Based on the investigation on surface water in the central coal districts of the Guizhou Province, 18 water samples were collected for heavy metal analysis. The results indicated that the pH value of surface water is low (3.11-4.92), and Fe concentration (1.31-5.55 mg L-1) and Mn concentration (1.90-5.71 mg L^-1) were, on average, 10.86 and 34.33 times the limit of Surface Water Quality Standards, respectively. In order to evaluate the effects of the OA on the dissolution of Fe and Mn from the weath- ering coal gangue, column elution and batch leaching experiments were conducted. The results show that the low molecular weight of organic acids (LMWOAs, i.e., oxalic, tartaric, malic and citric acids) and fulvic acids signifi- cantly accelerated the dissolution of Fe and Mn; in addi- tion, when the concentration of OA reached 25 mmol L-1, the concentrations of Fe, and Mn were 1.14-67.08 and 1.11-2.32 times as high as those in 0.5 mmol L-1OA, respectively. Furthermore, the migration of Fe and Mn was significantly influenced by the pH and Eh, especially for Fe; the ion Mn was dissolved from the gangue more easily than the ion Fe in the column leaching, which was contrary to the results of batch leaching.展开更多
The leaching kinetics of Tang-dan refractory low grade complex copper ore was investigated in ammonia-ammonium chloride solution.The concentration of ammonia and ammonium chloride,the ore particle size,the solid-to-li...The leaching kinetics of Tang-dan refractory low grade complex copper ore was investigated in ammonia-ammonium chloride solution.The concentration of ammonia and ammonium chloride,the ore particle size,the solid-to-liquid ratio and the temperature were chosen as parameters in the experiments.The results show that temperature,concentration of ammonia and ammonium chloride have favorable influence on the leaching rate of copper oxide ores.But,leaching rate decreases with increasing particle size and solid-to-liquid ratio.The leaching process is controlled by the diffusion of the lixiviant and the activation energy is determined to be 23.279 kJ/mol.An equation was also proposed to describe the leaching kinetics.展开更多
Chalcopyrite dissolution was evaluated by bioleaching and electrochemical experiments with thermophile A. manzaensis(Acidianus manzaensis) and mesophile L. ferriphilum(Leptospirillum ferriphium) cultures at 65 ℃ ...Chalcopyrite dissolution was evaluated by bioleaching and electrochemical experiments with thermophile A. manzaensis(Acidianus manzaensis) and mesophile L. ferriphilum(Leptospirillum ferriphium) cultures at 65 ℃ and 40 ℃, respectively. It was investigated that the bioleaching of chalcopyrite was stepwise. It was reduced to Cu2 S at a lower redox potential locating in the whole bioleaching process by A. manzaensis at high temperature while only at initial days of bioleaching by L. ferriphilum at a relative low temperature. No reduced product was detected when the redox potential was beyond a high level(e.g., 550 m V(vs SCE)) bioleached by L. ferriphilum. Chalcopyrite bioleaching efficiency was substantially improved bioleached by A. manaensis compared to that by L. ferriphilum, which was mainly attributed to the reduction reaction occurring during bioleaching. The reductive intermediate Cu2 S was more amenable to oxidation than chalcopyrite, causing enhanced copper extraction.展开更多
The extrartion of aluminum from coal mining waste(CMW) is an important industrial process.The two major problems in applications are low aluminum dissolution efficiency and high iron content in the raw material,which ...The extrartion of aluminum from coal mining waste(CMW) is an important industrial process.The two major problems in applications are low aluminum dissolution efficiency and high iron content in the raw material,which affect the quantity and quality of products.To improve the aluminum recovery process,the leaching kinetics of CMW with hydrochloric acid was studied.A shrinking core model was used to investigate aluminum and iron dissolution kinetics.Based on the kinetic characteristics,a process for recovering aluminum was proposed and tested experimentally.It is found that the aluminum leaching reaction is controlled by surface reaction at low temperatures(40-80℃) and by diffusion process at higher temperatures(90-106℃).The iron dissolution process is dominated by surface reaction at 40-100℃.The results show that iron could be dissolved or separated by concentrated hydrochloric acid.Fine grinding will improve aluminum dissolution significantly.展开更多
The rice-wheat rotation in southern China is characterized by frequent flooding-draining water regime and heavy nitrogen(N)fertilization. There is a substantial lack of studies into the behavior of dissolved organic n...The rice-wheat rotation in southern China is characterized by frequent flooding-draining water regime and heavy nitrogen(N)fertilization. There is a substantial lack of studies into the behavior of dissolved organic nitrogen(DON) in the intensively managed agroecosystem. A 3-year in situ field experiment was conducted to determine DON leaching and its seasonal and yearly variations as affected by fertilization, irrigation and precipitation over 6 consecutive rice/wheat seasons. Under the conventional N practice(300kg N ha-1for rice and 200 kg N ha-1for wheat), the seasonal average DON concentrations in leachate(100 cm soil depth) for the three rice and wheat seasons were 0.6–1.1 and 0.1–2.3 mg N L-1, respectively. The cumulative DON leaching was estimated to be1.1–2.3 kg N ha-1for the rice seasons and 0.01–1.3 kg N ha-1for the wheat seasons, with an annual total of 1.1–3.6 kg N ha-1. In the rice seasons, N fertilizer had little effect(P > 0.05) on DON leaching; precipitation and irrigation imported 3.6–9.1 kg N ha-1of DON, which may thus conceal the fertilization effect on DON. In the wheat seasons, N fertilization had a positive effect(P < 0.01)on DON. Nevertheless, this promotive effect was strongly influenced by variable precipitation, which also carried 1.8–2.9 kg N ha-1of DON into fields. Despite a very small proportion to chemical N applied and large variations driven by water regime, DON leaching is necessarily involved in the integrated field N budget in the rice-wheat rotation due to its relatively greater amount compared to other natural ecosystems.展开更多
基金Projects(41073060,21007009)supported by the National Natural Science Foundation of China"Chen Guang" project(10CG34)supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation,ChinaProjects(20100075120010,20100075110010)supported by Research Fund for the Doctoral Program of Higher Education of China
文摘AThe wastewater source of 4# tailing pond in Dexing copper mine consists of alkaline flotation pulp and acid mine drainage (AMD) from the nearby opencast mine. Therefore, the heavy metals in tailing ore are very likely to be released due to acidification from AMD. The leaching behaviors ofZn, Cu, Fe and Mn in mine tailings from Dexing copper mine were investigated by a series of laboratory batch experiments. The effectcs ofpH, temperature, particle size and contact time on the leachability of such heavy metals were examined. It was evident that Zn, Cu, Fe and Mn were major heavy metals in the tailings while gangue minerals like quartz were major constituents in examined tailings. The tailing dissolution reaction was controlled by the acid, whose kinetics could be expressed according to the heterogeneous reaction models and explained by a shrinking core model with the surface chemical reaction as the rate-controlling step. The leachability of all metals examined depended on pH and contact time. The batch studies indicated that the maximum leaching ratios ofZn, Cu, Fe and Mn at pH 2.0 were 5.4%, 5.8%, l 1.1% and 34.1%, respectively. The dissolubility of all metals examined was positively correlated to the temperatures. The particle size would not change dissolution tendency of those heavy metals, but decrease the concentrations of leached heavy metals.
基金Projects(51374248,51320105006)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595)supported by the Program for New Century Excellent Talents in University,ChinaProject(CX2014B091)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was much easier to be oxidized rather than to be reduced, and chalcopyrite was difficult to be both oxidized and reduced. The relatively higher copper extraction of bornite dissolution can be attributed to its higher oxidation rate. Covellite(CuS) was detected as the intermediate species during the dissolution processes of both bornite and chalcopyrite. Bornite dissolution was preferred to be a direct oxidation pathway, in which bornite was directly oxidized to covellite(CuS) and cupric ions, and the formed covellite(CuS) may inhibit the further dissolution. Chalcopyrite dissolution was preferred to be a continuous reduction-oxidation pathway, in which chalcopyrite was initially reduced to bornite, then oxidized to covellite(CuS), and the initial reduction reaction was the rate-limiting step.
基金supported by the FUBAP(Firat University scientific research projects)under the project No:MF.12.32
文摘The addition of NaCl in the ammonium persulfate-APS(as an oxidant)leaching was investigated.APS has some advantages compared with conventional oxidants and its standard redox potential(E°)is2.0V.Effect of six parameters such as NaCl concentration,APS concentration,temperature,time,liquid–solid ration(L/S),and stirring speed on the leaching behavior was studied.Results showed that metals extraction increased with increasing of NaCl concentration,APS concentration,leaching temperature(up to333K),and L/S ratio.During oxidative leaching of sulfide minerals,the occurrence of elemental sulfur layer on particle surface is known as primary problem that causes low metal extraction.According to the results,the passivation effect of sulfur layer and low dissolution problems can be eliminated in the presence of chloride ions.Copper and iron extraction yields were obtained as75%and80%,respectively under leaching conditions as follows:APS concentration250g/L;NaCl concentration150g/L;time180min;temperature333K;stirring speed400r/min;and L/S250mL/g.
基金Project(41371475)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.
基金sponsored by The Innovative Talent Team Construction Project for Science and Technology of Guizhou Province (Project Number [2012]4005)
文摘Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated water and soil. Based on the investigation on surface water in the central coal districts of the Guizhou Province, 18 water samples were collected for heavy metal analysis. The results indicated that the pH value of surface water is low (3.11-4.92), and Fe concentration (1.31-5.55 mg L-1) and Mn concentration (1.90-5.71 mg L^-1) were, on average, 10.86 and 34.33 times the limit of Surface Water Quality Standards, respectively. In order to evaluate the effects of the OA on the dissolution of Fe and Mn from the weath- ering coal gangue, column elution and batch leaching experiments were conducted. The results show that the low molecular weight of organic acids (LMWOAs, i.e., oxalic, tartaric, malic and citric acids) and fulvic acids signifi- cantly accelerated the dissolution of Fe and Mn; in addi- tion, when the concentration of OA reached 25 mmol L-1, the concentrations of Fe, and Mn were 1.14-67.08 and 1.11-2.32 times as high as those in 0.5 mmol L-1OA, respectively. Furthermore, the migration of Fe and Mn was significantly influenced by the pH and Eh, especially for Fe; the ion Mn was dissolved from the gangue more easily than the ion Fe in the column leaching, which was contrary to the results of batch leaching.
基金Projects(2007CB613604) supported by the National Basic Research Program of ChinaProject(50674104) supported by the National Natural Science Foundation of China
文摘The leaching kinetics of Tang-dan refractory low grade complex copper ore was investigated in ammonia-ammonium chloride solution.The concentration of ammonia and ammonium chloride,the ore particle size,the solid-to-liquid ratio and the temperature were chosen as parameters in the experiments.The results show that temperature,concentration of ammonia and ammonium chloride have favorable influence on the leaching rate of copper oxide ores.But,leaching rate decreases with increasing particle size and solid-to-liquid ratio.The leaching process is controlled by the diffusion of the lixiviant and the activation energy is determined to be 23.279 kJ/mol.An equation was also proposed to describe the leaching kinetics.
基金Project(2010CB630903)supported by National Basic Research Program of ChinaProject(51374249)supported by the National Natural Science Foundation of China
文摘Chalcopyrite dissolution was evaluated by bioleaching and electrochemical experiments with thermophile A. manzaensis(Acidianus manzaensis) and mesophile L. ferriphilum(Leptospirillum ferriphium) cultures at 65 ℃ and 40 ℃, respectively. It was investigated that the bioleaching of chalcopyrite was stepwise. It was reduced to Cu2 S at a lower redox potential locating in the whole bioleaching process by A. manzaensis at high temperature while only at initial days of bioleaching by L. ferriphilum at a relative low temperature. No reduced product was detected when the redox potential was beyond a high level(e.g., 550 m V(vs SCE)) bioleached by L. ferriphilum. Chalcopyrite bioleaching efficiency was substantially improved bioleached by A. manaensis compared to that by L. ferriphilum, which was mainly attributed to the reduction reaction occurring during bioleaching. The reductive intermediate Cu2 S was more amenable to oxidation than chalcopyrite, causing enhanced copper extraction.
基金Supported by the National High Technology Research and Development Program of China(2011AA06A103)the National Natural Science Foundation of China(21306109)
文摘The extrartion of aluminum from coal mining waste(CMW) is an important industrial process.The two major problems in applications are low aluminum dissolution efficiency and high iron content in the raw material,which affect the quantity and quality of products.To improve the aluminum recovery process,the leaching kinetics of CMW with hydrochloric acid was studied.A shrinking core model was used to investigate aluminum and iron dissolution kinetics.Based on the kinetic characteristics,a process for recovering aluminum was proposed and tested experimentally.It is found that the aluminum leaching reaction is controlled by surface reaction at low temperatures(40-80℃) and by diffusion process at higher temperatures(90-106℃).The iron dissolution process is dominated by surface reaction at 40-100℃.The results show that iron could be dissolved or separated by concentrated hydrochloric acid.Fine grinding will improve aluminum dissolution significantly.
基金supported by the Jiangsu Provincial Natural Science Foundation of China(No.BK-2010612)the Foundation of State Key Laboratory of Soil and Sustainable Agriculture,China(No.Y05-2010034)the National Natural Science Foundation of China(No.41001147)
文摘The rice-wheat rotation in southern China is characterized by frequent flooding-draining water regime and heavy nitrogen(N)fertilization. There is a substantial lack of studies into the behavior of dissolved organic nitrogen(DON) in the intensively managed agroecosystem. A 3-year in situ field experiment was conducted to determine DON leaching and its seasonal and yearly variations as affected by fertilization, irrigation and precipitation over 6 consecutive rice/wheat seasons. Under the conventional N practice(300kg N ha-1for rice and 200 kg N ha-1for wheat), the seasonal average DON concentrations in leachate(100 cm soil depth) for the three rice and wheat seasons were 0.6–1.1 and 0.1–2.3 mg N L-1, respectively. The cumulative DON leaching was estimated to be1.1–2.3 kg N ha-1for the rice seasons and 0.01–1.3 kg N ha-1for the wheat seasons, with an annual total of 1.1–3.6 kg N ha-1. In the rice seasons, N fertilizer had little effect(P > 0.05) on DON leaching; precipitation and irrigation imported 3.6–9.1 kg N ha-1of DON, which may thus conceal the fertilization effect on DON. In the wheat seasons, N fertilization had a positive effect(P < 0.01)on DON. Nevertheless, this promotive effect was strongly influenced by variable precipitation, which also carried 1.8–2.9 kg N ha-1of DON into fields. Despite a very small proportion to chemical N applied and large variations driven by water regime, DON leaching is necessarily involved in the integrated field N budget in the rice-wheat rotation due to its relatively greater amount compared to other natural ecosystems.