Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C...Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C=O) of MDOP were correlated with solvent properties such as solvent acceptor number (AN) and the linear solvation energy relationships (LSER). These frequencies showed a good correlation with the solvent acceptor number (AN) and the LSER.展开更多
The interaction between a solute atom and an extended dislocation was investigated using a continuum approximation method with force multipoles.The dislocation core structure of extended dislocation was modeled with t...The interaction between a solute atom and an extended dislocation was investigated using a continuum approximation method with force multipoles.The dislocation core structure of extended dislocation was modeled with the Peierls-Nabarro model discretized with a number of infinitesimal Volterra dislocations.The interaction energy and force between a nickel solute atom and perfect and extended dislocation in copper were successfully calculated using the force multipoles.The results clearly show that the core structure of extended dislocation weakens the interaction with solute atoms.The interaction energy and force for extended dislocations are almost the half of those for perfect dislocations.展开更多
文摘Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C=O) of MDOP were correlated with solvent properties such as solvent acceptor number (AN) and the linear solvation energy relationships (LSER). These frequencies showed a good correlation with the solvent acceptor number (AN) and the LSER.
文摘The interaction between a solute atom and an extended dislocation was investigated using a continuum approximation method with force multipoles.The dislocation core structure of extended dislocation was modeled with the Peierls-Nabarro model discretized with a number of infinitesimal Volterra dislocations.The interaction energy and force between a nickel solute atom and perfect and extended dislocation in copper were successfully calculated using the force multipoles.The results clearly show that the core structure of extended dislocation weakens the interaction with solute atoms.The interaction energy and force for extended dislocations are almost the half of those for perfect dislocations.