With titanium-bearing blast furnace slag, ammonium sulfate, citric acid and potassium carbonate as raw materials to produce foliar fertilizer and Ca-S-Si compound fertilizer by means of heating process for the first t...With titanium-bearing blast furnace slag, ammonium sulfate, citric acid and potassium carbonate as raw materials to produce foliar fertilizer and Ca-S-Si compound fertilizer by means of heating process for the first time, which improved the solubility of the slag and converted the nutritional elements into such ones which are prone to be absorbed by plants. The effects of process conditions on dissolution rate of titanium were mainly analyzed through the orthogonal experiment. The results showed that the optimum synthesis process conditions of foliar fertilizer from the slag were 360 ℃ for 35 min, the mass ratio of ammonium sulfate and titanium-bearing blast furnace slag was 8:1. Under these conditions more than 80% of iron, titanium, magnesium and part of silicon in titanium-bearing blast furnace slag converted into water-soluble substances and existing in foliar fertilizer. Foliar fertilizer contained nitrogen, sulfur, potassium, iron, titanium, magnesium and silicon, and pH value of foliar fertilizer was 6. Ca-S-Si compound fertilizer mainly contained calcium silicate and calcium sulfate, which existed in the form of citric acid-soluble substance and slightly soluble substance, respectively.展开更多
For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different ...For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost.展开更多
基金This study was supported by the National Natural Science Foundation of China (No. 50874029) and the National Basic Research Program of China (No.2007CB613504). Thanks are due to X.L. Nan and B.Y. Ma for their assistance in language editing.
文摘With titanium-bearing blast furnace slag, ammonium sulfate, citric acid and potassium carbonate as raw materials to produce foliar fertilizer and Ca-S-Si compound fertilizer by means of heating process for the first time, which improved the solubility of the slag and converted the nutritional elements into such ones which are prone to be absorbed by plants. The effects of process conditions on dissolution rate of titanium were mainly analyzed through the orthogonal experiment. The results showed that the optimum synthesis process conditions of foliar fertilizer from the slag were 360 ℃ for 35 min, the mass ratio of ammonium sulfate and titanium-bearing blast furnace slag was 8:1. Under these conditions more than 80% of iron, titanium, magnesium and part of silicon in titanium-bearing blast furnace slag converted into water-soluble substances and existing in foliar fertilizer. Foliar fertilizer contained nitrogen, sulfur, potassium, iron, titanium, magnesium and silicon, and pH value of foliar fertilizer was 6. Ca-S-Si compound fertilizer mainly contained calcium silicate and calcium sulfate, which existed in the form of citric acid-soluble substance and slightly soluble substance, respectively.
基金Project(2011CB610403)support by the National Basic Research Program of ChinaProjects(51134011,51431008)supported by the National Natural Science Foundation of China+1 种基金Project(JC20120223)supported by the Fundamental Research Fund of Northwestern Polytechnical University,ChinaProject(51125002)supported by the National Funds for Distinguished Young Scientists of China
文摘For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost.