Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under t...Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces.展开更多
Dry sliding wear tests were performed on a Mg-10Y-4Gd-1.5Zn-0.4Zr alloy using a Ball-on-Flat type wear apparatus against an AISI 52100 type bearing steel ball counterface. The wear rates were measured within a load ra...Dry sliding wear tests were performed on a Mg-10Y-4Gd-1.5Zn-0.4Zr alloy using a Ball-on-Flat type wear apparatus against an AISI 52100 type bearing steel ball counterface. The wear rates were measured within a load range of 3-25 N, a sliding speed range of 0.03-0.3 m/s and a sliding temperature range of 25-200 ℃ at a constant sliding distance of 400 m. The morphologies of the worn surfaces and wear debris were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Comparatively, the wear properties of a hypereutectic Al-Si aluminium alloy under the same condition were measured. The results indicate that the wear rates of Mg-10Y-4Gd-1.5Zn-0.4Zr alloy are lower than that of cast+T6 AC9B aluminium alloy. The dominant mechanism of cast+T6 Mg-10Y-4Gd-1.5Zn-0.4Zr alloy is abrasion wear mixed with other wear mechanisms, which tends to be an abrasion and plastic deformation wear at high normal load such as 10-25 N, abrasion and plastic deformation wears with small participation of delamination and oxidative wears at high sliding speed such as 0.12-0.3 m/s, and an oxidative and abrasion wear at high test temperature such as 100-200 ℃. The Mg12Y1Zn1 phase in Mg-10Y-4Gd-1.5Zn-0.4Zr alloy plays an important role in the wear rate.展开更多
Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of ...Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear.展开更多
The effect of Fe-impurity(0.2%-2%, mass fraction) on the microstructure, dry sliding wear, and friction properties of Al-15 Mg2 Si composite was investigated using a pin-on-disk tester under the applied pressures of...The effect of Fe-impurity(0.2%-2%, mass fraction) on the microstructure, dry sliding wear, and friction properties of Al-15 Mg2 Si composite was investigated using a pin-on-disk tester under the applied pressures of 0.25, 0.5 and 1 MPa at a constant sliding speed of 0.13 m/s. According to the results, Fe modified the primary Mg2 Si particles from irregular dendritic form to smaller particles with polyhedral shapes, refined the pseudo-eutectic structure, and led to the formation of hard b-Al5 Fe Si platelets in the matrix. In spite of hardness improvement by these microstructural changes, the resistance of the composite against dry sliding wear was impaired. SEM examination of the worn surfaces, wear debris, and subsurface regions confirmed the negative effect of b-phase on the tribological properties. It was found that b-particles were fractured easily, thereby decreasing the potential of the substrate to resist against sliding stresses and giving rise to the instability and easy detachment of tribolayer as large delaminated debris. The friction results also revealed that Fe slightly decreased the average friction coefficient, but increased the fluctuation in friction.展开更多
Al2O3 fiber (Al2O3f) and SiC particle (SiCp) hybrid metal matrix composites (MMCs) were fabricated by squeeze casting method.The tests were carried out using a pin-on-disk friction and wear tester by sliding the...Al2O3 fiber (Al2O3f) and SiC particle (SiCp) hybrid metal matrix composites (MMCs) were fabricated by squeeze casting method.The tests were carried out using a pin-on-disk friction and wear tester by sliding these pin specimens at a constant speed of 0.36 m/s (570 r/min) against a steel counter disk at room temperature,100 C and 150 C,respectively.To observe the wear characteristics and investigate the wear mechanism,the morphologies of the worn surfaces and specific wear rate were analyzed by using scanning electron microscope (SEM) and Arrhenius plots.Moreover,the effects of fiber orientation and hybrid ratio were discussed.展开更多
MoSi2 samples were prepared by a self-propagating high-temperature synthesis (SHS) and a hot-press technique. The sliding friction and wear properties of intermetallic MoSi2 against AISI10045 steel under dry friction ...MoSi2 samples were prepared by a self-propagating high-temperature synthesis (SHS) and a hot-press technique. The sliding friction and wear properties of intermetallic MoSi2 against AISI10045 steel under dry friction and oil lubrication conditions were investigated with a MRH-5A type ring-on-block friction and wear tester. The elemental composition, microstructure and worn surface morphology of the MoSi2 material were observed and analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The synthetic parameter pv value reflecting friction work, was used to discuss the tribological properties of MoSi2 material. The results show that 1) oil lubrication can obviously improve the tribological properties of MoSi2, 2) the bigger the pv value, the greater the antifriction and the abrasive resistance of MoSi2 under oil lubrication, 3) with an increase in the pv value, the wear mechanism of MoSi2 material under dry sliding friction is the fatigue fracture and adhesive wear and 4) under oil lubrication the wear mechanism is mainly fatigue pitting.展开更多
A pin-on-disc wear apparatus was used to carry out the tribological experiment of brass to investigate the effect of a magnetorheological (MR) fluid on the interfacial surface with and without magnetic field. A seri...A pin-on-disc wear apparatus was used to carry out the tribological experiment of brass to investigate the effect of a magnetorheological (MR) fluid on the interfacial surface with and without magnetic field. A series of tests were performed at the loads of 20-100 N and rotating speeds of 127-425 r/min for 2 h. The friction coefficient and wear rate were monitored by the wear apparatus, while the microstructures of the worn surfaces were observed by scanning electron microscope (SEM). In addition, the chemical composition of worn surfaces was analyzed by energy dispersive X-ray spectroscopy (EDS). Test results show different friction and wear performance of the MR fluid with and without magnetic field. At the same time, the effects of various normal loads and rotating speeds on the tribological behavior were investigated. Through the investigation of the morphologies of the wom surfaces under the magnetic field, it is found that the MR particles are clearly evident on the wom surface and the plastic flow of ridges causes the lateral extrusion. This directly indicates that abrasive wear is the predominant wear mechanism observed with MR fluid.展开更多
Fractal geometry was used to describe the distribution characteristics of wear debris group collected from pin-on-disc wear tester under dry friction conditions, and experimental study and theoretical analysis were ma...Fractal geometry was used to describe the distribution characteristics of wear debris group collected from pin-on-disc wear tester under dry friction conditions, and experimental study and theoretical analysis were made for the distribution features of wear debris group. It was found that the wear debris size distribution conforms to the fractal distribution law. Two numerical parameters, fractal dimension D and scale coefficient C, were defined with their geometric and tribological meanings and calculating methods given. It was discovered that these two parameters can be used to describe the variation law of wear status, which provide the basis for diagnosis and prognosis of tribological systems.展开更多
Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinf...Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.展开更多
基金Project (51071078) supported by the National Natural Science Foundation of ChinaProject (AE201035) supported by the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, China
文摘Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces.
基金Project(51404082)supported by the National Natural Science Foundation of ChinaProject(E201442)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(12531116)supported by the Foundation of Educational Committee of Heilongjiang Province,ChinaProject(2013RFQXJ137)supported by the Harbin Special Funds for Creative Talents in Science and Technology,ChinaProject(201510)supported by Science Funds for the Young Innovative Talents of HUST,China
文摘Dry sliding wear tests were performed on a Mg-10Y-4Gd-1.5Zn-0.4Zr alloy using a Ball-on-Flat type wear apparatus against an AISI 52100 type bearing steel ball counterface. The wear rates were measured within a load range of 3-25 N, a sliding speed range of 0.03-0.3 m/s and a sliding temperature range of 25-200 ℃ at a constant sliding distance of 400 m. The morphologies of the worn surfaces and wear debris were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Comparatively, the wear properties of a hypereutectic Al-Si aluminium alloy under the same condition were measured. The results indicate that the wear rates of Mg-10Y-4Gd-1.5Zn-0.4Zr alloy are lower than that of cast+T6 AC9B aluminium alloy. The dominant mechanism of cast+T6 Mg-10Y-4Gd-1.5Zn-0.4Zr alloy is abrasion wear mixed with other wear mechanisms, which tends to be an abrasion and plastic deformation wear at high normal load such as 10-25 N, abrasion and plastic deformation wears with small participation of delamination and oxidative wears at high sliding speed such as 0.12-0.3 m/s, and an oxidative and abrasion wear at high test temperature such as 100-200 ℃. The Mg12Y1Zn1 phase in Mg-10Y-4Gd-1.5Zn-0.4Zr alloy plays an important role in the wear rate.
基金Project(51201143)supported by the National Natural Science Foundation of ChinaProject(SWJTU12BR004)supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear.
文摘The effect of Fe-impurity(0.2%-2%, mass fraction) on the microstructure, dry sliding wear, and friction properties of Al-15 Mg2 Si composite was investigated using a pin-on-disk tester under the applied pressures of 0.25, 0.5 and 1 MPa at a constant sliding speed of 0.13 m/s. According to the results, Fe modified the primary Mg2 Si particles from irregular dendritic form to smaller particles with polyhedral shapes, refined the pseudo-eutectic structure, and led to the formation of hard b-Al5 Fe Si platelets in the matrix. In spite of hardness improvement by these microstructural changes, the resistance of the composite against dry sliding wear was impaired. SEM examination of the worn surfaces, wear debris, and subsurface regions confirmed the negative effect of b-phase on the tribological properties. It was found that b-particles were fractured easily, thereby decreasing the potential of the substrate to resist against sliding stresses and giving rise to the instability and easy detachment of tribolayer as large delaminated debris. The friction results also revealed that Fe slightly decreased the average friction coefficient, but increased the fluctuation in friction.
基金supported by Changwon National University in 2010the Korea Research Foundation Grant (KRF-2008-D00005) funded by the Korean Government (MOEHRD Basic Research Promotion Fund)
文摘Al2O3 fiber (Al2O3f) and SiC particle (SiCp) hybrid metal matrix composites (MMCs) were fabricated by squeeze casting method.The tests were carried out using a pin-on-disk friction and wear tester by sliding these pin specimens at a constant speed of 0.36 m/s (570 r/min) against a steel counter disk at room temperature,100 C and 150 C,respectively.To observe the wear characteristics and investigate the wear mechanism,the morphologies of the worn surfaces and specific wear rate were analyzed by using scanning electron microscope (SEM) and Arrhenius plots.Moreover,the effects of fiber orientation and hybrid ratio were discussed.
基金Projects 50405041 supported by National Natural Science Foundation of China and 04C218 by Hunan Province Education Foundation of China
文摘MoSi2 samples were prepared by a self-propagating high-temperature synthesis (SHS) and a hot-press technique. The sliding friction and wear properties of intermetallic MoSi2 against AISI10045 steel under dry friction and oil lubrication conditions were investigated with a MRH-5A type ring-on-block friction and wear tester. The elemental composition, microstructure and worn surface morphology of the MoSi2 material were observed and analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The synthetic parameter pv value reflecting friction work, was used to discuss the tribological properties of MoSi2 material. The results show that 1) oil lubrication can obviously improve the tribological properties of MoSi2, 2) the bigger the pv value, the greater the antifriction and the abrasive resistance of MoSi2 under oil lubrication, 3) with an increase in the pv value, the wear mechanism of MoSi2 material under dry sliding friction is the fatigue fracture and adhesive wear and 4) under oil lubrication the wear mechanism is mainly fatigue pitting.
基金Project (2010-0015090) supported by the National Research Foundation of Korea
文摘A pin-on-disc wear apparatus was used to carry out the tribological experiment of brass to investigate the effect of a magnetorheological (MR) fluid on the interfacial surface with and without magnetic field. A series of tests were performed at the loads of 20-100 N and rotating speeds of 127-425 r/min for 2 h. The friction coefficient and wear rate were monitored by the wear apparatus, while the microstructures of the worn surfaces were observed by scanning electron microscope (SEM). In addition, the chemical composition of worn surfaces was analyzed by energy dispersive X-ray spectroscopy (EDS). Test results show different friction and wear performance of the MR fluid with and without magnetic field. At the same time, the effects of various normal loads and rotating speeds on the tribological behavior were investigated. Through the investigation of the morphologies of the wom surfaces under the magnetic field, it is found that the MR particles are clearly evident on the wom surface and the plastic flow of ridges causes the lateral extrusion. This directly indicates that abrasive wear is the predominant wear mechanism observed with MR fluid.
文摘Fractal geometry was used to describe the distribution characteristics of wear debris group collected from pin-on-disc wear tester under dry friction conditions, and experimental study and theoretical analysis were made for the distribution features of wear debris group. It was found that the wear debris size distribution conforms to the fractal distribution law. Two numerical parameters, fractal dimension D and scale coefficient C, were defined with their geometric and tribological meanings and calculating methods given. It was discovered that these two parameters can be used to describe the variation law of wear status, which provide the basis for diagnosis and prognosis of tribological systems.
基金Project(51165022)supported by the National Natural Science Foundation of ChinaProject(20122117)supported by the Lanzhou Science and Technology Bureau Foundation,ChinaProject(1310RJZA036)supported by the Natural Science Foundation of Gansu Province,China
文摘Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.