In order to determine the slip plane of slope directly by the calculation results of strength reduction method, and analyze the influential factors of slope stability, a numerical model was established in plane strain...In order to determine the slip plane of slope directly by the calculation results of strength reduction method, and analyze the influential factors of slope stability, a numerical model was established in plane strain mode by FLAC3D for homogeneous soil slope, whose parameters were reduced until the slope reached the critical state. Then FISH program was used to get the location data of slip plane from displacement contour lines. Furthermore, the method to determine multiple slip planes was also proposed by setting different heights of elastic areas. The influential factors for the stability were analyzed, including cohesion, internal friction angle, and tensile strength. The calculation results show that with the increase of cohesion, failure mode of slope changes from shallow slipping to the deep slipping, while inclination of slip plane becomes slower and slipping volume becomes larger; with the increase of friction angle, failure mode of slope changes from deep slipping to shallow slipping, while slip plane becomes steeper and upper border of slip plane comes closer to the vertex of slope; the safety factor increases little and slip plane goes far away from vertex of slope with the increase of tensile strength.展开更多
A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and...A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering.展开更多
Geotextile tube technology has been increasingly used in dykes. In this work reinforcement theory and circle method were employed to examine the allowable tensile limit of the geotextile tube and the stability factor ...Geotextile tube technology has been increasingly used in dykes. In this work reinforcement theory and circle method were employed to examine the allowable tensile limit of the geotextile tube and the stability factor of the slip surface of the dyke. The formulas to calculate the layer-to-layer spacing and size of geotextile tubes applied to double prism dykes were deduced. The application of these formulas was illustrated by several examples. The calculation results indicate that unequal spacing arrangement is more economical than equal spacing and the layer number of required geotextile tubes decreases with the increase of allowable tensile strength of the geotextile.展开更多
In analyzing seismic stability of a slope with upper bound limit analysis method, the slip surface is often assumed as a log-spiral or plane slip surface. However, due to the presence of a weak layer and unfavorable g...In analyzing seismic stability of a slope with upper bound limit analysis method, the slip surface is often assumed as a log-spiral or plane slip surface. However, due to the presence of a weak layer and unfavorable geological structural surface or a bedrock interface with overlying soft strata, the preexisting slip surface of the slope may be irregular and composed of a series of planes rather than strictly logspiral or plane shape. A computational model is developed for analyzing the seismic stability of slopes with pre-existing slip surfaces. This model is based on the upper bound limit analysis method and can consider the effect of anchor bolts. The soil or rock is deemed to follow the Mohr-Coulomb yield criterion. The slope is divided into multiple block elements along the slip surface. According to the displacement compatibility and the associated flow rule, a kinematic velocity field of the slope can be obtained computationally. The proposed model allows not only calculation of the rate of external work owing to the combined effect of self-weight and seismic loading, but also that of the energy dissipation rate caused by the slip surface, interfaces of block elements and anchorage effect of the anchors. Considering a direct relationship between the rate of external work and the energy dissipation rate, the expressions of yield acceleration and permanent displacement of anchored slopes can be derived. Finally, the validity of this proposed model is illustrated by analysis on three typical slopes. The results showed that the proposed model is more easily formulated and does not need to solve complex equations or time consuming iterations compared with previous methods based on the conditions of force equilibrium.展开更多
In order to study the influence of depth-thickness ratio on bedding slope stability, whose sliding surface is flexural concave in shape under mining conditions, this paper aims to study the characteristics ofdeformari...In order to study the influence of depth-thickness ratio on bedding slope stability, whose sliding surface is flexural concave in shape under mining conditions, this paper aims to study the characteristics ofdeformarion and damage of bedding sliding with depth-thickness ratios of 200:1,150:1,120:1,100:1 and 50:1 by adopting numerical simulation analysis software combined with laboratory-made "under the influence of mining variable sliding surface slope similar simulation test bed", and to propose identification methods for slope stability under the infuence of mining. The results show that mining activities under the slope reduce slope stability. With a decrease in the mining depth ratio, the influence of mining on the slope increases gradually, and the damage to the slope gradually expands, the stability of the slope grad- ually reduces, fracture occurs on the slope toe and the central fissure gradually develops to the surface, and reaches slide threshold when the depth-thickness ratio is 50:1.展开更多
基金Project(20060533071) supported by the Doctoral Program Foundation of Higher Education of ChinaProject (20060400264) supported by China Postdoctoral Science Foundation+1 种基金Project (50774093) supported by the National Natural Science Foundation of ChinaProject (1343-74236000014) supported by Graduate Student Innovation Foundation of Hunan Province, China
文摘In order to determine the slip plane of slope directly by the calculation results of strength reduction method, and analyze the influential factors of slope stability, a numerical model was established in plane strain mode by FLAC3D for homogeneous soil slope, whose parameters were reduced until the slope reached the critical state. Then FISH program was used to get the location data of slip plane from displacement contour lines. Furthermore, the method to determine multiple slip planes was also proposed by setting different heights of elastic areas. The influential factors for the stability were analyzed, including cohesion, internal friction angle, and tensile strength. The calculation results show that with the increase of cohesion, failure mode of slope changes from shallow slipping to the deep slipping, while inclination of slip plane becomes slower and slipping volume becomes larger; with the increase of friction angle, failure mode of slope changes from deep slipping to shallow slipping, while slip plane becomes steeper and upper border of slip plane comes closer to the vertex of slope; the safety factor increases little and slip plane goes far away from vertex of slope with the increase of tensile strength.
基金Project(50878082)supported by the National Natural Science Foundation of ChinaProject(2012C21058)supported by the Public Welfare Technology Application Research of Zhejiang Province,China
文摘A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering.
基金the Key Laboratory of Advanced Textile Technology & Garment CAD in Ningbo(Identification No. 20060406112)
文摘Geotextile tube technology has been increasingly used in dykes. In this work reinforcement theory and circle method were employed to examine the allowable tensile limit of the geotextile tube and the stability factor of the slip surface of the dyke. The formulas to calculate the layer-to-layer spacing and size of geotextile tubes applied to double prism dykes were deduced. The application of these formulas was illustrated by several examples. The calculation results indicate that unequal spacing arrangement is more economical than equal spacing and the layer number of required geotextile tubes decreases with the increase of allowable tensile strength of the geotextile.
基金financially supported by the NSFC-ICIMOD joint project(41761144077)the Light of West“Belt&Road”international cooperation team project of Chinese Academy of Sciences(Su Lijun)+1 种基金the Hundred Talents Program of Chinese Academy of Sciences(Su Lijun)the NSFC(National Natural Science Foundation of China)project(51278397)
文摘In analyzing seismic stability of a slope with upper bound limit analysis method, the slip surface is often assumed as a log-spiral or plane slip surface. However, due to the presence of a weak layer and unfavorable geological structural surface or a bedrock interface with overlying soft strata, the preexisting slip surface of the slope may be irregular and composed of a series of planes rather than strictly logspiral or plane shape. A computational model is developed for analyzing the seismic stability of slopes with pre-existing slip surfaces. This model is based on the upper bound limit analysis method and can consider the effect of anchor bolts. The soil or rock is deemed to follow the Mohr-Coulomb yield criterion. The slope is divided into multiple block elements along the slip surface. According to the displacement compatibility and the associated flow rule, a kinematic velocity field of the slope can be obtained computationally. The proposed model allows not only calculation of the rate of external work owing to the combined effect of self-weight and seismic loading, but also that of the energy dissipation rate caused by the slip surface, interfaces of block elements and anchorage effect of the anchors. Considering a direct relationship between the rate of external work and the energy dissipation rate, the expressions of yield acceleration and permanent displacement of anchored slopes can be derived. Finally, the validity of this proposed model is illustrated by analysis on three typical slopes. The results showed that the proposed model is more easily formulated and does not need to solve complex equations or time consuming iterations compared with previous methods based on the conditions of force equilibrium.
文摘In order to study the influence of depth-thickness ratio on bedding slope stability, whose sliding surface is flexural concave in shape under mining conditions, this paper aims to study the characteristics ofdeformarion and damage of bedding sliding with depth-thickness ratios of 200:1,150:1,120:1,100:1 and 50:1 by adopting numerical simulation analysis software combined with laboratory-made "under the influence of mining variable sliding surface slope similar simulation test bed", and to propose identification methods for slope stability under the infuence of mining. The results show that mining activities under the slope reduce slope stability. With a decrease in the mining depth ratio, the influence of mining on the slope increases gradually, and the damage to the slope gradually expands, the stability of the slope grad- ually reduces, fracture occurs on the slope toe and the central fissure gradually develops to the surface, and reaches slide threshold when the depth-thickness ratio is 50:1.