本文基于隐马尔可夫模型(HMM),选取上证指数近10年的历史数据(开盘价、最高价、最低价和收盘价)进行实证分析,得出HMM模型在股票预测方面具有一定的可行性。同时,通过对传统HMM模型的输入和预测方法进行改进,对股票价格变化作出了更加...本文基于隐马尔可夫模型(HMM),选取上证指数近10年的历史数据(开盘价、最高价、最低价和收盘价)进行实证分析,得出HMM模型在股票预测方面具有一定的可行性。同时,通过对传统HMM模型的输入和预测方法进行改进,对股票价格变化作出了更加准确的预测。主要步骤为:1) 数据处理。对股票价格序列进行检验并做处理,以股价波动率作为HMM模型的输入。2) 根据池化信息准则(AIC)和贝叶斯信息准则(BIC)固定最佳隐状态数目,并通过训练模型确定参数。3) 预测。相较于传统HMM模型根据股票价格序列直接得到预测数据,改进后的HMM模型则通过股价波动率计算后得出的预测得到了进一步提升。Based on the Hidden Markov Model (HMM), this paper selects the historical data of the Shanghai Composite Index in the past 10 years (opening price, high price, low price and closing price) for empirical analysis, and concludes that the HMM model has certain feasibility in stock prediction. At the same time, through the improvement of the input and prediction methods of the traditional HMM model, more accurate predictions are made for stock price changes. The main steps are: 1) Data processing. The stock price series is tested and processed, and the stock price volatility is used as the input to the HMM model. 2) The number of optimal hidden states is fixed according to the Pooling Information Criterion (AIC) and Bayesian Information Criterion (BIC), and the parameters are determined by training the model. 3) Forecasting. Compared with the traditional HMM model, which directly obtains the forecast data based on the stock price series, the improved HMM model further improves the prediction obtained by calculating the stock price volatility.展开更多
通过电能质量监测系统(power quality monitoring system,PQMS)中蕴含的电网历史故障变化、趋势等重要信息,对未来电压暂降进行预测,可为用户和电网公司合理规划生产,避免经济损失提供有力帮助。该文提出一种基于隐马尔可夫模型的电压...通过电能质量监测系统(power quality monitoring system,PQMS)中蕴含的电网历史故障变化、趋势等重要信息,对未来电压暂降进行预测,可为用户和电网公司合理规划生产,避免经济损失提供有力帮助。该文提出一种基于隐马尔可夫模型的电压暂降发生时间(occurrence time of voltage sag,OTVS)预测方法。首先对电压暂降发生时间的变量可预测性、数据冗余性、事件混沌性进行分析,揭示电压暂降监测数据特性;然后针对这三种特性,提出基于模糊C-均值聚类算法(fuzzy C-means algorithm,FCMA)和赤池信息准则(Akaike information criterion,AIC)的电压暂降历史状态识别与划分方法,以区间型变量刻画监测数据中的历史变化信息;建立考虑暂降历史变化信息和电网扰动变化信息的隐马尔可夫模型,实现对未来电压暂降的预测。最后,利用中部某省10个监测点的历史数据进行验证,所提方法的预测准确率最高可达92.85%,所提方法的预测性能较其他典型预测方法约高5%~30%。展开更多
文摘本文基于隐马尔可夫模型(HMM),选取上证指数近10年的历史数据(开盘价、最高价、最低价和收盘价)进行实证分析,得出HMM模型在股票预测方面具有一定的可行性。同时,通过对传统HMM模型的输入和预测方法进行改进,对股票价格变化作出了更加准确的预测。主要步骤为:1) 数据处理。对股票价格序列进行检验并做处理,以股价波动率作为HMM模型的输入。2) 根据池化信息准则(AIC)和贝叶斯信息准则(BIC)固定最佳隐状态数目,并通过训练模型确定参数。3) 预测。相较于传统HMM模型根据股票价格序列直接得到预测数据,改进后的HMM模型则通过股价波动率计算后得出的预测得到了进一步提升。Based on the Hidden Markov Model (HMM), this paper selects the historical data of the Shanghai Composite Index in the past 10 years (opening price, high price, low price and closing price) for empirical analysis, and concludes that the HMM model has certain feasibility in stock prediction. At the same time, through the improvement of the input and prediction methods of the traditional HMM model, more accurate predictions are made for stock price changes. The main steps are: 1) Data processing. The stock price series is tested and processed, and the stock price volatility is used as the input to the HMM model. 2) The number of optimal hidden states is fixed according to the Pooling Information Criterion (AIC) and Bayesian Information Criterion (BIC), and the parameters are determined by training the model. 3) Forecasting. Compared with the traditional HMM model, which directly obtains the forecast data based on the stock price series, the improved HMM model further improves the prediction obtained by calculating the stock price volatility.
文摘通过电能质量监测系统(power quality monitoring system,PQMS)中蕴含的电网历史故障变化、趋势等重要信息,对未来电压暂降进行预测,可为用户和电网公司合理规划生产,避免经济损失提供有力帮助。该文提出一种基于隐马尔可夫模型的电压暂降发生时间(occurrence time of voltage sag,OTVS)预测方法。首先对电压暂降发生时间的变量可预测性、数据冗余性、事件混沌性进行分析,揭示电压暂降监测数据特性;然后针对这三种特性,提出基于模糊C-均值聚类算法(fuzzy C-means algorithm,FCMA)和赤池信息准则(Akaike information criterion,AIC)的电压暂降历史状态识别与划分方法,以区间型变量刻画监测数据中的历史变化信息;建立考虑暂降历史变化信息和电网扰动变化信息的隐马尔可夫模型,实现对未来电压暂降的预测。最后,利用中部某省10个监测点的历史数据进行验证,所提方法的预测准确率最高可达92.85%,所提方法的预测性能较其他典型预测方法约高5%~30%。
文摘目的运用自回归积分滑动平均模型(Autoregressive Intergrated Moving Average,ARIMA)建立月平均住院费用和住院日的医学经济学模型,为医院精细化管理提供依据。方法利用R4.0.2软件对2017年1月—2021年12月四川大学华西医院宜宾医院(宜宾市第二人民医院)的平均住院费用和住院日数据建立时间序列ARIMA预测模型。结果住院费用最优模型为ARIMA(0,1,1),赤池信息准则(Akaike information criterion,AIC)=924.35,贝叶斯信息准则(Bayesian Information Criterion,BIC)=928.51,残差Ljung-Box Q=12.51(P=0.768),可认为残差序列为白噪声。平均住院日的最优模型为ARIMA(5,1,1),AIC=87.49,BIC=104.11,残差Ljung-Box Q=10.05(P=0.612),可认为残差序列为白噪声。2022年1—12月实际值与预测值基本吻合,月人均住院费用和人均住院日的平均相对误差为0.55%、0.29%。结论建立基于时间序列ARIMA模型能够为合理配置卫生资源提供强有力的数据支撑。