期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ISSA-BP神经网络的滑坡区输电铁塔状态预测模型 被引量:4
1
作者 李梦源 董瑞科 +2 位作者 王彦海 周冬阳 邹梦健 《电子测量技术》 北大核心 2023年第11期74-82,共9页
滑坡区输电铁塔基础发生位移时,会导致铁塔的最大位移及杆件所受最大应力发生变化,建立铁塔状态预测模型可得到铁塔的最大位移及杆件所受最大应力变化趋势,进而预防灾害事故的发生。提出一种改进麻雀搜索算法优化BP神经网络的预测模型,... 滑坡区输电铁塔基础发生位移时,会导致铁塔的最大位移及杆件所受最大应力发生变化,建立铁塔状态预测模型可得到铁塔的最大位移及杆件所受最大应力变化趋势,进而预防灾害事故的发生。提出一种改进麻雀搜索算法优化BP神经网络的预测模型,首先利用Sin混沌序列与步长因子动态调整策略对麻雀搜索算法进行优化,其次用优化后的模型对BP神经网络的权值及阈值进行参数寻优,得到预测模型。将铁塔基础在XYZ方向的位移值作为预测模型的输入量,得到铁塔最大位移值及铁塔杆件最大应力的预测值。本预测模型较BP神经网络模型相比,方根误差RSME值最高下降了63.4%,平均相对误差MAPE值最高下降了60.4%,绝对值平均绝对误差MAE值最高下降了62.6%,同时本文预测模型预测值符合真实值的变化趋势,综上本预测模型能较准确地预测输电铁塔运行状态,为其安全运行提供有力保障。 展开更多
关键词 滑坡区输电铁塔 BP神经网络 麻雀搜索算法 步长因子动态调整
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部