To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal q...To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal quantity lubrication(MQL),cryogenic MQL,and ionized air as the cooling/lubrication conditions are studied.Experimental results show that at speed 120 m/min turning Ti6Al4V,the cutting force under ionized air is smallest under all lubricant conditions,and tool life is best,next is cryogenic MQL.MQL and cold air almost have the same effect,a little better than dry.Meanwhile the smallest surface roughness is also obtained under ionized air condition.Flank wear and crater wear are the dominant failure modes when high-speed turning Ti6Al4V by SEM analysis.Finally the conclusion is drawn that ionized air and cryogenic MQL have better cooling/lubrication effects and can effectively improve the tool life.展开更多
In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ...In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ions deposited into a precursor film consisted of MgCO3 and Mgs(CO3)4(OH)2·4H2O; secondly, the precursor translated into the crystalline Mg(OH)2 in alkaline conditions; finally, the Mg2+ ions in Mg(OH)z were replaced by A13+ ions, Mg(OH)2 translated into the more stable LDH structure, simultaneously, the OH- ions in the interlayer were exchanged by CO32-, thus led to the formation of the LDH (Mg6Alz(OHh6CO3·4H2O) film. The results indicated that the LDH film characterized by interlocking plate-like nanostructures and ion-exchange ability significantly improved the corrosion resistance of the AZ31 Mg alloy.展开更多
The oil film clutch, which is superior in speed adjustment, is capable of being used in the belt conveyor to carry out soft start operation. According to running properties of both belt conveyor and oil film clutch...The oil film clutch, which is superior in speed adjustment, is capable of being used in the belt conveyor to carry out soft start operation. According to running properties of both belt conveyor and oil film clutch, equations that are used to decide the lubricating oil flow and the number of oil films (i.e. the number of rotating and stationary plates) are deduced theoretically. Also key parameters are provided for the design of the hydraulic system. All these together provide the theoretical basis for the soft start design of the belt conveyor and references for the application of the oil film clutch in similar fields.展开更多
Studies were conducted to determine the cause of the acute mortality of half-smooth tongue sole Cynoglossus semilaevis Günther juveniles in a fish farm in Jimo, Shandong Province, China, in June 2006. Gross signs...Studies were conducted to determine the cause of the acute mortality of half-smooth tongue sole Cynoglossus semilaevis Günther juveniles in a fish farm in Jimo, Shandong Province, China, in June 2006. Gross signs of the diseased tongue sole included several petechiae and ecchymoses on the body and fin necrosis and hemorrhagic lesion at the base of the fin. Bacteria were isolated from kidney, liver and hemorrhagic lesions of the diseased tongue sole. Among 14 strains, SJ060621 was proved to be highly virulent to juvenile tongue sole with LD50 value of 〈1.0×10^5 colony forming units (CFU)mL^-1, while the remaining 13 were avirulent. Among the 16 antibiotics tested, SJ060621 was sensitive to gentamicin and nitrofurantoin. It was identified as Listonella anguillantm with conventional plate and tube tests in combination with API 20E analysis. 16S rRNA gene and partial HSP60 gene sequenceing analysis revealed that the strain was highly homologous with L. anguillarum. Examination of the infected musculature by electron microscopy indicated numerous bacteria and lots of macrophages containing phagocytosed bacteria. Histopathological investigations revealed severe necrotic degenerative changes in the infected organs. Indirect immunofluorescence assay (IFA) was employed to detect the location of occurrence of bacteria, and bacteria were found in aggregations in the inflammatory areas in musculature.展开更多
Active fault creep slip induces deformation of rock mass buried deeply in fault zones that significantly affect the operational safety of long linear projects passing through it.Displacement distribution patterns of r...Active fault creep slip induces deformation of rock mass buried deeply in fault zones that significantly affect the operational safety of long linear projects passing through it.Displacement distribution patterns of rock masses in active fault zones which have been investigated previously are the key design basis for such projects.Therefore,a discrete element numerical model with different fault types,slip time,dip angles,and complex geological features was established,and then the creep slip for normal,reverse,and strike-slip faults were simulated to analyze the displacement distribution in the fault rock mass.A disk rotation test system and the corresponding laboratory test method were developed for simulating rock mass displacement induced by creep slippage of faults.A series of rotation tests for softand hard-layered specimens under combined compression and torsional stress were conducted to verify the numerical results and analyze the factors influencing the displacement distribution.An S-shaped displacement distribution independent of fault dip angle was identified corresponding to reverse,normal,and strike-slip faults.The results indicated that the higher the degree of horizontal extrusion,the softer the rock mass at the fault core,and the higher the degree of displacement concentration in the fault core;about 70%of the creep slip displacement occurs within this zone under 100 years of creep slippage.展开更多
Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite sh...Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite showed excellent floatability while talc was completely depressed by TG,thus realizing the flotation separation of the two minerals.X-ray photoelectron spectroscopy(XPS)analysis results showed that TG was adsorbed on molybdenite surface via chemisorption.The results of contact angle measurement,Fourier transform infrared(FTIR)spectroscopy,and time-of-flight secondary ion mass spectrometry(ToF-SIMS)indicated that the pre-adsorption of TG on molybdenite could not hinder the further chemisorption of PBX on molybdenite.Because PBX has no collecting ability on talc,the flotation separation of molybdenite and talc came true using PBX to collect molybdenite and TG to depress talc.展开更多
AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats. METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical ...AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats. METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical trituration with polished pipettes. Patch clamp technique in whole-cell mode was employed to record calcium and potassium currents. RESULTS: The procedure dissociated smooth muscle cells without impairing the electrophysiological characteristics of the cells. The voltage-gated Ca^2+ and potassium currents were successfully recorded using whole-cell patch clamp configuration. CONCLUSION: The method dissociates smooth muscle cells from rat mesenteric arterial branches. Voltage-gated channel currents can be recorded in this preparation.展开更多
The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficienc...The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficiencies are obtained which proves that the GA is effective for the treatment of volatile organic compounds (VOCs) with either low or high concentration. A theoretical decomposition mechanism is proposed based on detection of the species in the plasma region and analysis of the decomposition by-products. This preliminary investigation reveals that the GA has potential to be applied to the treatment of exhaust air during color printing and coating works, by either direct removal or combination with activated carbon adsorption/desorption process.展开更多
Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of...Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.展开更多
Tungsten film(W film) is deposited by using the ion beam assisted deposition(IBAD) on the 316 L substrate surface in this experiment. The micro structure and nano-hardness of the film are investigated by scanning elec...Tungsten film(W film) is deposited by using the ion beam assisted deposition(IBAD) on the 316 L substrate surface in this experiment. The micro structure and nano-hardness of the film are investigated by scanning electron microscopy(SEM) and nano-indentation tester. The tribological behavior of W film under lubrication by oil with ZDDP and MoDTC is evaluated by a SRV test machine. The tribo-film formed on the worn surfaces is investigated by X-ray photoelectron spectroscopy(XPS) to find out the tribological mechanisms between the W film and the two additional additives. The result shows that the W film lubricated by ZDDP and MoDTC-blended base oil has synergistic effects on the friction reduction property, while the anti-wear property is mainly caused by the hard surface of W film.展开更多
Dynamic responses of a multi-storey building without or with a sliding base-isolation device for ground shock induced by an in-tunnel explosion are numerically analyzed. The effect of an adjacent tunnel in between the...Dynamic responses of a multi-storey building without or with a sliding base-isolation device for ground shock induced by an in-tunnel explosion are numerically analyzed. The effect of an adjacent tunnel in between the building and the explosion tunnel, which affects ground shock propagation , is considered in the analysis. Different modeling methods, such as the eight-node equal-parametric finite element and mass-lumped system, are used to establish the coupling model consisting of the two adjacent tunnels, the surrounding soil medium with the Lysmer viscous boundary condition, and the multi-storey building with or without the sliding base-isolation device. In numerical calculations , a continuous friction model, which is different from the traditional Coulomb friction model, is adopted to improve the computational efficiency and reduce the accumulated errors. Some example analyses are subsequently performed to study the response characteristics of the building and the sliding base-isolation device to ground shock. The effect of the adjacent tunnel in between the building and the explosion tunnel on the ground shock wave propagation is also investigated. The final conclusions based on the numerical results will provide some guidance in engineering practice.展开更多
The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separate...The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.展开更多
In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has be...In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.展开更多
There are many factors influencing landslide occurrence.The key for landslide control is to confirm the regional landslide hazard factors.The Cameron Highlands of Malaysia was selected as the study area.By bivariate s...There are many factors influencing landslide occurrence.The key for landslide control is to confirm the regional landslide hazard factors.The Cameron Highlands of Malaysia was selected as the study area.By bivariate statistical analysis method with GIS software the authors analyzed the relationships among landslides and environmental factors such as lithology,geomorphy,elevation,road and land use.Distance Evaluation Model was developed with Landslide Density(LD).And the assessment of landslide hazard of Cameron Highlands was performed.The result shows that the model has higher prediction precision.展开更多
As a solid lubricant, silver-palladium (Ag-Pd) alloy coating was investigated for the application to high temperature stud bolt. A glue layer nickel (Ni) film was deposited on the surface of the hex bolt sample and th...As a solid lubricant, silver-palladium (Ag-Pd) alloy coating was investigated for the application to high temperature stud bolt. A glue layer nickel (Ni) film was deposited on the surface of the hex bolt sample and then Ag-Pd alloy coating was performed on it using ion plating method. The friction coefficient of Ag-Pd alloy film coated bolt was lower than that of N-5000 oil coated bolt by the result of axial force measurement. The cyclic test of heat treatment was conducted to evaluate the durability of Ag-Pd alloy film coated bolt. In a cycle, sample was assembled into the block using torque wrench, followed by heating and disassembling. It was not successful to disassemble the N-5000 oil coated bolt from the block after only one cycle. However, the Ag-Pd alloy film coated bolt was able to be disassembled softly till 12 cycles.展开更多
An experimental study of the dependence of SiO2 waveguide side wall roughness on the etch condi- tions and etch masks in CHF3/O2 based reactive ion etching plasma was reported. When working under standard low-pressure...An experimental study of the dependence of SiO2 waveguide side wall roughness on the etch condi- tions and etch masks in CHF3/O2 based reactive ion etching plasma was reported. When working under standard low-pressure (20mtorr) etching conditions, a novel etch roughening phenomenon has been observed in the plasma, that is, the roughness of the etched front surface increases with the amount of material etched, independent of etch rate, RF power, and gas composition. Besides, the etched underlying side wall will be tapered as the upper SU-8 resist pattern degradation transfers downward. A process using double-layered mask, consisting of SU-8 resist and thin Chromium film, was developed for improving the side wall smoothness. Based on the studies, SiO2/Si channel waveguides with the propagation loss less than 0. 07dB/cm were fabricated at last.展开更多
In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation...In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation(PEO)in an aluminate and silicate electrolytes,respectively.The performance of PEO coatings was investigated by dry sliding wear and electrochemical corrosion tests.The aluminate coating exhibits excellent wear resistance under both 10 and 20 N loads.The silicate coating only shows low wear rate under 10 N,but it was destroyed under 20 N.Corrosion tests show that the Al layer after magnetron sputtering treatment alone cannot afford good protection to the Mg substrate.However,the duplex layer of PEO/Al can significantly improve the corrosion resistance of AZ31 alloy.Electrochemical tests show that the aluminate and silicate coatings have corrosion current densities of-1.6×10^(-6) and-1.1×10^(-6) A/cm^(2),respectively,which are two orders lower than that of the un-coated AZ31 alloy.However,immersion tests and electrochemical impedance spectroscopy(EIS)show that the aluminate coating exhibits better long-term corrosion protection than silicate coating.展开更多
The characteristics of talc-magnesite from the Zinelbulak deposit(Uzbekistan) were investigated via X-ray diffraction, differential thermal analysis,infrared spectroscopy and optical microscopy.The mineralogical compo...The characteristics of talc-magnesite from the Zinelbulak deposit(Uzbekistan) were investigated via X-ray diffraction, differential thermal analysis,infrared spectroscopy and optical microscopy.The mineralogical composition of the Zinelbulak talc-magnesite consists of 52 wt.%talc,43 wt.%carbonates and 5 wt.%of the iron-containing minerals magnetite,siderite and chlorite.Petrographic analysis confirmed the presence of carbonates in two forms:magnesite and breunnerite.Grindability tests revealed that talc and magnesite particles are completely separated after a grinding process carried out for 10~12 min.The distribution of the yield of talc and magnesite,as a function of the particle size,shows an irregular feature in that a comparatively coarser sample(>0.1 mm) is richer in magnesite and poor in talc while a comparatively finer sample(<0.1 mm) has a composition poorer in magnesite.The dressability of the Zinelbulak talc-magnesite was tested using conventional gravity concentration,flotation and electromagnetic separation.Gravity concentration was found to be the most economic initial process for the complete separation of magnesium carbonate and talc.Subsequent flotation and magnetic separation techniques could further increase the yield of high quality magnesite and talc.Refractory samples prepared by heating the separated magnesite at 1600℃for 2 h met the State Standards for refractory materials.展开更多
基金Supported by the National Natural Science Foundation of China(50975141,51005118)~~
文摘To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal quantity lubrication(MQL),cryogenic MQL,and ionized air as the cooling/lubrication conditions are studied.Experimental results show that at speed 120 m/min turning Ti6Al4V,the cutting force under ionized air is smallest under all lubricant conditions,and tool life is best,next is cryogenic MQL.MQL and cold air almost have the same effect,a little better than dry.Meanwhile the smallest surface roughness is also obtained under ionized air condition.Flank wear and crater wear are the dominant failure modes when high-speed turning Ti6Al4V by SEM analysis.Finally the conclusion is drawn that ionized air and cryogenic MQL have better cooling/lubrication effects and can effectively improve the tool life.
基金Project(51241001) supported by the National Natural Science Foundation of ChinaProject(ZR2011EMM004) supported by Shandong Provincial Natural Science Foundation,China+1 种基金Project(TS20110828) supported by Taishan Scholarship Project of Shandong Province,ChinaProject(2014TDJH104) supported by SDUST Research Fund,Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources of Shandong Province,China
文摘In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ions deposited into a precursor film consisted of MgCO3 and Mgs(CO3)4(OH)2·4H2O; secondly, the precursor translated into the crystalline Mg(OH)2 in alkaline conditions; finally, the Mg2+ ions in Mg(OH)z were replaced by A13+ ions, Mg(OH)2 translated into the more stable LDH structure, simultaneously, the OH- ions in the interlayer were exchanged by CO32-, thus led to the formation of the LDH (Mg6Alz(OHh6CO3·4H2O) film. The results indicated that the LDH film characterized by interlocking plate-like nanostructures and ion-exchange ability significantly improved the corrosion resistance of the AZ31 Mg alloy.
文摘The oil film clutch, which is superior in speed adjustment, is capable of being used in the belt conveyor to carry out soft start operation. According to running properties of both belt conveyor and oil film clutch, equations that are used to decide the lubricating oil flow and the number of oil films (i.e. the number of rotating and stationary plates) are deduced theoretically. Also key parameters are provided for the design of the hydraulic system. All these together provide the theoretical basis for the soft start design of the belt conveyor and references for the application of the oil film clutch in similar fields.
基金This study was supported by National High Technology Development Program of China(863,Grant 2006AA100306)the Science Foundation of Shandong Province(032070104).
文摘Studies were conducted to determine the cause of the acute mortality of half-smooth tongue sole Cynoglossus semilaevis Günther juveniles in a fish farm in Jimo, Shandong Province, China, in June 2006. Gross signs of the diseased tongue sole included several petechiae and ecchymoses on the body and fin necrosis and hemorrhagic lesion at the base of the fin. Bacteria were isolated from kidney, liver and hemorrhagic lesions of the diseased tongue sole. Among 14 strains, SJ060621 was proved to be highly virulent to juvenile tongue sole with LD50 value of 〈1.0×10^5 colony forming units (CFU)mL^-1, while the remaining 13 were avirulent. Among the 16 antibiotics tested, SJ060621 was sensitive to gentamicin and nitrofurantoin. It was identified as Listonella anguillantm with conventional plate and tube tests in combination with API 20E analysis. 16S rRNA gene and partial HSP60 gene sequenceing analysis revealed that the strain was highly homologous with L. anguillarum. Examination of the infected musculature by electron microscopy indicated numerous bacteria and lots of macrophages containing phagocytosed bacteria. Histopathological investigations revealed severe necrotic degenerative changes in the infected organs. Indirect immunofluorescence assay (IFA) was employed to detect the location of occurrence of bacteria, and bacteria were found in aggregations in the inflammatory areas in musculature.
基金Project(U1865203)supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of ChinaProjects(41941018,51879135)supported by the National Natural Science Foundation of China。
文摘Active fault creep slip induces deformation of rock mass buried deeply in fault zones that significantly affect the operational safety of long linear projects passing through it.Displacement distribution patterns of rock masses in active fault zones which have been investigated previously are the key design basis for such projects.Therefore,a discrete element numerical model with different fault types,slip time,dip angles,and complex geological features was established,and then the creep slip for normal,reverse,and strike-slip faults were simulated to analyze the displacement distribution in the fault rock mass.A disk rotation test system and the corresponding laboratory test method were developed for simulating rock mass displacement induced by creep slippage of faults.A series of rotation tests for softand hard-layered specimens under combined compression and torsional stress were conducted to verify the numerical results and analyze the factors influencing the displacement distribution.An S-shaped displacement distribution independent of fault dip angle was identified corresponding to reverse,normal,and strike-slip faults.The results indicated that the higher the degree of horizontal extrusion,the softer the rock mass at the fault core,and the higher the degree of displacement concentration in the fault core;about 70%of the creep slip displacement occurs within this zone under 100 years of creep slippage.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51664020)the Natural Science Foundation of Jiangxi Province,China(No.20202ACBL214010)+1 种基金Open Foundation of State Key Laboratory of Mineral Processing,China(No.BGRIMM-KJSKL-2020-12)Open Foundation of Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources,China(No.2018TP1002).
文摘Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite showed excellent floatability while talc was completely depressed by TG,thus realizing the flotation separation of the two minerals.X-ray photoelectron spectroscopy(XPS)analysis results showed that TG was adsorbed on molybdenite surface via chemisorption.The results of contact angle measurement,Fourier transform infrared(FTIR)spectroscopy,and time-of-flight secondary ion mass spectrometry(ToF-SIMS)indicated that the pre-adsorption of TG on molybdenite could not hinder the further chemisorption of PBX on molybdenite.Because PBX has no collecting ability on talc,the flotation separation of molybdenite and talc came true using PBX to collect molybdenite and TG to depress talc.
文摘AIM: To record calcium and potassium currents in acutely isolated smooth muscle cells of mesenteric arterial branches in rats. METHODS: Smooth muscle cells were freshly isolated by collagenase digest and mechanical trituration with polished pipettes. Patch clamp technique in whole-cell mode was employed to record calcium and potassium currents. RESULTS: The procedure dissociated smooth muscle cells without impairing the electrophysiological characteristics of the cells. The voltage-gated Ca^2+ and potassium currents were successfully recorded using whole-cell patch clamp configuration. CONCLUSION: The method dissociates smooth muscle cells from rat mesenteric arterial branches. Voltage-gated channel currents can be recorded in this preparation.
基金Project (No. 50476058) supported by the National Natural ScienceFoundation of China
文摘The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficiencies are obtained which proves that the GA is effective for the treatment of volatile organic compounds (VOCs) with either low or high concentration. A theoretical decomposition mechanism is proposed based on detection of the species in the plasma region and analysis of the decomposition by-products. This preliminary investigation reveals that the GA has potential to be applied to the treatment of exhaust air during color printing and coating works, by either direct removal or combination with activated carbon adsorption/desorption process.
基金Project(51375498)supported by the National Natural Science Foundation of China
文摘Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.
基金the Beijing Natural Science Foundation (3132023)the National Natural Science Foundation of China (51275494 and 51005218)+1 种基金the Fundamental Research Funds for the Central Universities (2652012115 and 2652013081)the Tribology Science Fund of State Key Laboratory of Tribology (SKLTKF13B10) for their financial support to this research
文摘Tungsten film(W film) is deposited by using the ion beam assisted deposition(IBAD) on the 316 L substrate surface in this experiment. The micro structure and nano-hardness of the film are investigated by scanning electron microscopy(SEM) and nano-indentation tester. The tribological behavior of W film under lubrication by oil with ZDDP and MoDTC is evaluated by a SRV test machine. The tribo-film formed on the worn surfaces is investigated by X-ray photoelectron spectroscopy(XPS) to find out the tribological mechanisms between the W film and the two additional additives. The result shows that the W film lubricated by ZDDP and MoDTC-blended base oil has synergistic effects on the friction reduction property, while the anti-wear property is mainly caused by the hard surface of W film.
基金Supported by National Science Fund for Distinguished Young Scholars of China (No. 50425824)National Natural Science Foundation of China (No. 50528808)
文摘Dynamic responses of a multi-storey building without or with a sliding base-isolation device for ground shock induced by an in-tunnel explosion are numerically analyzed. The effect of an adjacent tunnel in between the building and the explosion tunnel, which affects ground shock propagation , is considered in the analysis. Different modeling methods, such as the eight-node equal-parametric finite element and mass-lumped system, are used to establish the coupling model consisting of the two adjacent tunnels, the surrounding soil medium with the Lysmer viscous boundary condition, and the multi-storey building with or without the sliding base-isolation device. In numerical calculations , a continuous friction model, which is different from the traditional Coulomb friction model, is adopted to improve the computational efficiency and reduce the accumulated errors. Some example analyses are subsequently performed to study the response characteristics of the building and the sliding base-isolation device to ground shock. The effect of the adjacent tunnel in between the building and the explosion tunnel on the ground shock wave propagation is also investigated. The final conclusions based on the numerical results will provide some guidance in engineering practice.
文摘The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.
基金support from the 973 Program of China (Grant No. 2008CB425803)the West Light Foundation of the CAS (Grant No. 09R2200200)
文摘In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.
基金Supported by Project of the National High Technology Research and Development Program of China(No.2002AA130020)
文摘There are many factors influencing landslide occurrence.The key for landslide control is to confirm the regional landslide hazard factors.The Cameron Highlands of Malaysia was selected as the study area.By bivariate statistical analysis method with GIS software the authors analyzed the relationships among landslides and environmental factors such as lithology,geomorphy,elevation,road and land use.Distance Evaluation Model was developed with Landslide Density(LD).And the assessment of landslide hazard of Cameron Highlands was performed.The result shows that the model has higher prediction precision.
基金the research fund of the Korea Institute of Materials Science, a subsidiary branch of the Korea Institute of Machinery and Materialssupported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea
文摘As a solid lubricant, silver-palladium (Ag-Pd) alloy coating was investigated for the application to high temperature stud bolt. A glue layer nickel (Ni) film was deposited on the surface of the hex bolt sample and then Ag-Pd alloy coating was performed on it using ion plating method. The friction coefficient of Ag-Pd alloy film coated bolt was lower than that of N-5000 oil coated bolt by the result of axial force measurement. The cyclic test of heat treatment was conducted to evaluate the durability of Ag-Pd alloy film coated bolt. In a cycle, sample was assembled into the block using torque wrench, followed by heating and disassembling. It was not successful to disassemble the N-5000 oil coated bolt from the block after only one cycle. However, the Ag-Pd alloy film coated bolt was able to be disassembled softly till 12 cycles.
文摘An experimental study of the dependence of SiO2 waveguide side wall roughness on the etch condi- tions and etch masks in CHF3/O2 based reactive ion etching plasma was reported. When working under standard low-pressure (20mtorr) etching conditions, a novel etch roughening phenomenon has been observed in the plasma, that is, the roughness of the etched front surface increases with the amount of material etched, independent of etch rate, RF power, and gas composition. Besides, the etched underlying side wall will be tapered as the upper SU-8 resist pattern degradation transfers downward. A process using double-layered mask, consisting of SU-8 resist and thin Chromium film, was developed for improving the side wall smoothness. Based on the studies, SiO2/Si channel waveguides with the propagation loss less than 0. 07dB/cm were fabricated at last.
基金the National Natural Science Foundation of China(No.51671084)。
文摘In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation(PEO)in an aluminate and silicate electrolytes,respectively.The performance of PEO coatings was investigated by dry sliding wear and electrochemical corrosion tests.The aluminate coating exhibits excellent wear resistance under both 10 and 20 N loads.The silicate coating only shows low wear rate under 10 N,but it was destroyed under 20 N.Corrosion tests show that the Al layer after magnetron sputtering treatment alone cannot afford good protection to the Mg substrate.However,the duplex layer of PEO/Al can significantly improve the corrosion resistance of AZ31 alloy.Electrochemical tests show that the aluminate and silicate coatings have corrosion current densities of-1.6×10^(-6) and-1.1×10^(-6) A/cm^(2),respectively,which are two orders lower than that of the un-coated AZ31 alloy.However,immersion tests and electrochemical impedance spectroscopy(EIS)show that the aluminate coating exhibits better long-term corrosion protection than silicate coating.
基金the Fulbright Program for the award of a research fellowship under which the present study was partially carried out.
文摘The characteristics of talc-magnesite from the Zinelbulak deposit(Uzbekistan) were investigated via X-ray diffraction, differential thermal analysis,infrared spectroscopy and optical microscopy.The mineralogical composition of the Zinelbulak talc-magnesite consists of 52 wt.%talc,43 wt.%carbonates and 5 wt.%of the iron-containing minerals magnetite,siderite and chlorite.Petrographic analysis confirmed the presence of carbonates in two forms:magnesite and breunnerite.Grindability tests revealed that talc and magnesite particles are completely separated after a grinding process carried out for 10~12 min.The distribution of the yield of talc and magnesite,as a function of the particle size,shows an irregular feature in that a comparatively coarser sample(>0.1 mm) is richer in magnesite and poor in talc while a comparatively finer sample(<0.1 mm) has a composition poorer in magnesite.The dressability of the Zinelbulak talc-magnesite was tested using conventional gravity concentration,flotation and electromagnetic separation.Gravity concentration was found to be the most economic initial process for the complete separation of magnesium carbonate and talc.Subsequent flotation and magnetic separation techniques could further increase the yield of high quality magnesite and talc.Refractory samples prepared by heating the separated magnesite at 1600℃for 2 h met the State Standards for refractory materials.