The effect of viscosity and viscosity difference and boundary patterned slip on mixing in a micro mixer has been numerically studied using lattice Boltzmann method (LBM). The slip and no-slip ratio is not constant a...The effect of viscosity and viscosity difference and boundary patterned slip on mixing in a micro mixer has been numerically studied using lattice Boltzmann method (LBM). The slip and no-slip ratio is not constant and varies irregularly, and viscosity is altered by changing the relaxation time in LBE equation. The slip boundary condition is simulated by specular reflection boundary and the no-slip boundary condition is simulated by bounce back boundary. It has been found that it is feasible to optimize the micro mixer design by combining the viscosity effect and boundary patterned ratio altogether.展开更多
A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the num...A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the numerical simulations of wet steam flow in a 2D LAVAL nozzle and in the White cascade respectively. The results of two simulations demonstrate that the model is reliable. Meanwhile, the spontaneous condensing flow in White cascade was analyzed and it infers that the irreversible loss caused by condensation accounts for the largest share (about 8.78% of inlet total pressure) in total pressure loss while the loss caused by velocity slip takes the smallest share (nearly 0.42%), and another part of total pressure loss caused by pneumatic factors contributes a less share than condensation, i.e. almost 3.95% of inlet total pressure.展开更多
In this paper, we perform a numerical simulation of the cavitating flow around an underwater hemispherical-head slender body running at a high speed. For the first time, the slip boundary condition is introduced into ...In this paper, we perform a numerical simulation of the cavitating flow around an underwater hemispherical-head slender body running at a high speed. For the first time, the slip boundary condition is introduced into this problem, and we find that the slip boundary condition has a big influence on the cavitation in the flow-separation zone. By simulating the cavitating flow under different cavitation numbers, we demonstrate that the slip boundary condition can effectively reduce the intensity of cavitation, as represented by the length of cavitation bubbles. The present paper provides a new method for utilization of new surface materials to control the cavitation on the underwater moving objects.展开更多
A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to cha...A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics(MD)simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.展开更多
The first part of this study is focused on the numerical modelling and experimental investigation of transonic flow through a 2D model of the male rotor-housing gap in a dry screw compressor.Numerical simulations of t...The first part of this study is focused on the numerical modelling and experimental investigation of transonic flow through a 2D model of the male rotor-housing gap in a dry screw compressor.Numerical simulations of the clearance flow are performed with the help of the in-house compressible Navier-Stokes solver.Experimental measurements based on the Schlieren method in Toepler configuration are carried out.The objective of the second part of the study is to derive the analytical solution of gas microflow development in a gap between two parallel plates.The microflow is assumed to be laminar,incompressible and the velocity slip boundary conditions are considered at the walls.The constant velocity profile is prescribed at the inlet.For the mathematical description of the problem,the Oseen equation is used.The analytical results are compared with the numerical ones obtained using the developed incompressible Navier-Stokes solver including the slip flow boundary conditions.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 10932010the Natural Science Foundation of Zhejiang Province under Grant No. Y607425+1 种基金the Research Grants Council of the Government of the HKSAR under Grant No. PolyU5231/06EThe Hong Kong Polytechnic University under Grant No. G-Y84 is Gratefully Acknowledged
文摘The effect of viscosity and viscosity difference and boundary patterned slip on mixing in a micro mixer has been numerically studied using lattice Boltzmann method (LBM). The slip and no-slip ratio is not constant and varies irregularly, and viscosity is altered by changing the relaxation time in LBE equation. The slip boundary condition is simulated by specular reflection boundary and the no-slip boundary condition is simulated by bounce back boundary. It has been found that it is feasible to optimize the micro mixer design by combining the viscosity effect and boundary patterned ratio altogether.
基金support for this work by the fundamental research funds for the Cen-tral Universities (Grant No. HIT. NSRIF. 201173)
文摘A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the numerical simulations of wet steam flow in a 2D LAVAL nozzle and in the White cascade respectively. The results of two simulations demonstrate that the model is reliable. Meanwhile, the spontaneous condensing flow in White cascade was analyzed and it infers that the irreversible loss caused by condensation accounts for the largest share (about 8.78% of inlet total pressure) in total pressure loss while the loss caused by velocity slip takes the smallest share (nearly 0.42%), and another part of total pressure loss caused by pneumatic factors contributes a less share than condensation, i.e. almost 3.95% of inlet total pressure.
基金the National Natural Science Foundation of China(Grant No.11172001)
文摘In this paper, we perform a numerical simulation of the cavitating flow around an underwater hemispherical-head slender body running at a high speed. For the first time, the slip boundary condition is introduced into this problem, and we find that the slip boundary condition has a big influence on the cavitation in the flow-separation zone. By simulating the cavitating flow under different cavitation numbers, we demonstrate that the slip boundary condition can effectively reduce the intensity of cavitation, as represented by the length of cavitation bubbles. The present paper provides a new method for utilization of new surface materials to control the cavitation on the underwater moving objects.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1262103,11302218 and 11172289)Anhui Provincial Natural Science Foundation(Grant Nos.1308085QA10 and 1408085J08)the Fundamental Research Funds for the Central Universities of China
文摘A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics(MD)simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.
基金supported by the grant GACR 101/08/0623 of the Czech Science Foundation and by the research project MSM4977751303 of the Ministry of Education,Youth and Sports of the Czech Republic
文摘The first part of this study is focused on the numerical modelling and experimental investigation of transonic flow through a 2D model of the male rotor-housing gap in a dry screw compressor.Numerical simulations of the clearance flow are performed with the help of the in-house compressible Navier-Stokes solver.Experimental measurements based on the Schlieren method in Toepler configuration are carried out.The objective of the second part of the study is to derive the analytical solution of gas microflow development in a gap between two parallel plates.The microflow is assumed to be laminar,incompressible and the velocity slip boundary conditions are considered at the walls.The constant velocity profile is prescribed at the inlet.For the mathematical description of the problem,the Oseen equation is used.The analytical results are compared with the numerical ones obtained using the developed incompressible Navier-Stokes solver including the slip flow boundary conditions.