期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5s的滑雪人员检测研究 被引量:3
1
作者 彭雅坤 曹伊宁 刘晓群 《长江信息通信》 2021年第8期24-26,共3页
针对滑雪人员目标检测研究中,存在的检测精度低、速度慢,不同姿态识别效果差等问题,采用YOLOv5s网络模型,改进损失函数,增加平衡因子,在自制滑雪人员数据集上对网络进行训练,利用训练好的网络进行图像特征提取,实现滑雪人员的快速检测... 针对滑雪人员目标检测研究中,存在的检测精度低、速度慢,不同姿态识别效果差等问题,采用YOLOv5s网络模型,改进损失函数,增加平衡因子,在自制滑雪人员数据集上对网络进行训练,利用训练好的网络进行图像特征提取,实现滑雪人员的快速检测。基于YOLOv5s的滑雪人员检测模型可以有效识别不同姿态下的滑雪人员,mAP值达到99.87%,Recall值达到97.66%,检测速度可以达到7ms/帧。实验结果表明,改进的YOLOv5s滑雪人员检测模型,检测速度快,检测精度高,鲁棒性强,有较好的可扩展性,既满足检测精度要求,又满足检测速度要求。 展开更多
关键词 人工智能 计算机视觉 YOLOv5s网络模型 目标检测 滑雪人员检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部