论文基于时延Petri网(Timed Petri Net,TdPN)建立了一种考虑行人影响的可变相序信号控制模型,以有效缓解城市交叉口交通拥堵、车辆通行效率低下的问题。首先使用时延Petri网描述行人过街行为及其与车流冲突的过程,并对可变相序下车流受...论文基于时延Petri网(Timed Petri Net,TdPN)建立了一种考虑行人影响的可变相序信号控制模型,以有效缓解城市交叉口交通拥堵、车辆通行效率低下的问题。首先使用时延Petri网描述行人过街行为及其与车流冲突的过程,并对可变相序下车流受行人影响的配时进行决策,提出了一种滚动优化算法。该算法结合每个信号周期的车流与行人信息,按照先决策相序后决策配时的步骤对系统进行滚动优化,最终获得当前周期的最佳信号控制方案。通过将此模型与其他未虑行人影响的可变相序模型[12]和固定相序时延Petri网模型综合对比验证发现,该模型能有效缓解交通拥堵、提高交叉口的通行效率。展开更多
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th...Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.展开更多
文摘论文基于时延Petri网(Timed Petri Net,TdPN)建立了一种考虑行人影响的可变相序信号控制模型,以有效缓解城市交叉口交通拥堵、车辆通行效率低下的问题。首先使用时延Petri网描述行人过街行为及其与车流冲突的过程,并对可变相序下车流受行人影响的配时进行决策,提出了一种滚动优化算法。该算法结合每个信号周期的车流与行人信息,按照先决策相序后决策配时的步骤对系统进行滚动优化,最终获得当前周期的最佳信号控制方案。通过将此模型与其他未虑行人影响的可变相序模型[12]和固定相序时延Petri网模型综合对比验证发现,该模型能有效缓解交通拥堵、提高交叉口的通行效率。
文摘Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.