Acoupled biharmonic spline and linear interpolation algorithm was proposed to create a three-dimensional smooth deposit model with minimal curvature containing grade and position data. To obtain the optimal technical ...Acoupled biharmonic spline and linear interpolation algorithm was proposed to create a three-dimensional smooth deposit model with minimal curvature containing grade and position data. To obtain the optimal technical parameters, such as cuttingheight and drum diameter, a virtual longwall mining procedure was modelled by simulating the actual fully mechanized longwall mining process. Based on the above work, a bauxite deposit in a longwall mining panel was modelled by scattered grade data from ores sampled on the entry wall. The deposit was then demarcated by industrial indexes and sliced according to the virtual longwallmining procedure. The results show that the proposed interpolation algorithm can depict the stratiform structure of bauxite depositsand that the uncovered bauxite deposit has high proportions of high-grade and rich ore. The ranges of optimal cutting height and drum diameters are 1.72-2.84 m and 1.42-1.72 m, respectively. Finally, an intellectualized longwall mining procedure was designed to guide the mining process with the lowest dilution and loss rates.展开更多
In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and mat...In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.展开更多
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th...Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.展开更多
The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss consider...The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss considering different given axial loading and rotational speed working conditions was investigated.Since creep and lubrication relate to sliding and rolling motion wear,the creep and lubrication characteristics are analyzed under different working conditions.Besides,the precision loss was calculated considering the sole influence of sliding behavior between ball and screw and compared with the results from other current models.Finally,research on precision loss owing to the sliding-rolling mixed motion behavior was realized under given working conditions,and suitable wear tests were carried out.The analytical results of precision loss are in good agreement with the experimental test conclusions,which is conducive to better predicting the law of precision loss in stable wear period.展开更多
Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based ...Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based on this model,the rotational accuracy and load distribution of CRBs under constraints of geometry and external loads were derived.The fatigue life of CRBs with roundness error was calculated by applying Palmgren-Miner linear cumulative damage theory.The influence of inner and outer raceway roundness error on the performance of the CRBs,such as rotational accuracy,load distribution,and fatigue life,was studied through the analysis of examples.The results indicate that the influence of roundness error on the rotating inner raceway is more significant than that of roundness error on the nonrotating outer raceway.The roundness error on the rotating inner raceway always degrades the performance of CRBs.However,a proper roundness error on the nonrotating outer raceway can reduce the loads acting on the rollers and thus improve the fatigue life of CRBs.The effect of the roundness error amplitude on the bearing performance is ordinal,whereas the effect of the roundness order on the bearing performance is not in order.展开更多
A solution-treated AZ91 bulk material was deep-surface-rolled at room temperature to investigate the effect of deep surface rolling on the microstructure and mechanical properties of the alloy. Microhardness and micro...A solution-treated AZ91 bulk material was deep-surface-rolled at room temperature to investigate the effect of deep surface rolling on the microstructure and mechanical properties of the alloy. Microhardness and microstructure along the depth of the treated surface layer were characterized. The results show that the affected layer was up to 2.0 mm thick and consisted of three sublayers: a severe deformation layer with thickness of about 400 μm from the topmost surface, a medium deformation layer with thickness of around 600 μm and a small deformation layer up to 1000 μm thick. In addition to grain refinement in the deformation layer, strain-induced precipitation of β phase (Mg17Al12) was observed, particularly in the severe and medium deformation layers. It is believed that the cooperative effects of grain refinement, strain hardening and precipitation strengthening led to the significant increase in hardness of the AZ91 alloy after the deep surface rolling.展开更多
Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined compo...Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.展开更多
Nonlinear forces and moments caused by ball bearing were calculated based on relationship of displacement and deflection and quasi-dynamic model of bearing.Five-DOF dynamic equations of rotor supported by ball bearing...Nonlinear forces and moments caused by ball bearing were calculated based on relationship of displacement and deflection and quasi-dynamic model of bearing.Five-DOF dynamic equations of rotor supported by ball bearings were estimated.The Newmark-β method and Newton-Laphson method were used to solve the equations.The dynamic characteristics of rotor system were studied through the time response,the phase portrait,the Poincar?maps and the bifurcation diagrams.The results show that the system goes through the quasi-periodic bifurcation route to chaos as rotate speed increases and there are several quasi-periodic regions and chaos regions.The amplitude decreases and the dynamic behaviors change as the axial load of ball bearing increases;the initial contact angle of ball bearing affects dynamic behaviors of the system obviously.The system can avoid non-periodic vibration by choosing structural parameters and operating parameters reasonably.展开更多
The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations ...The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations with different thicknesses and elastic modulus ratios of coating to substrate were introduced, and the effects of thickness and elastic modulus ratio on the stresses were addressed. The calculation results show that the coating/substrate interface shear stress obviously decreases with increasing coating thickness, due to the location of the maximum shear stress moving away from the coating/substrate interface. At the same time, the magnitude of von Mises stress also declines in the case of thicker coatings. However, the high elastic modulus ratio results in extremely high maximum shear stress and the severe discontinuity of the von Mises stress curves, which leads to the intensive stress concentration on the coating/substrate interface. So the coating configurations with the larger coating thickness and lower difference of elastic modulus between coating and substrate exhibit excellent resistant performance of rolling contact fatigue (RCF).展开更多
Rolling resistance of tires is one of the most important factors influencing energy consumption of road vehicles, especially on rural roads. For practical reasons, most of rolling resistance measurements are usually p...Rolling resistance of tires is one of the most important factors influencing energy consumption of road vehicles, especially on rural roads. For practical reasons, most of rolling resistance measurements are usually performed for dry road conditions. Based on the fact that roads are wet during a considerable time over the year and as part of the projects MIR/AM, ROLRES and ROSANNE, the TUG (Technical University of Gdafisk) in Poland and VTI (Swedish National Road and Transport Research Institute) in Sweden carried out trailer rolling resistance measurements on wet road surfaces to investigate water film influence on rolling resistance on different pavements. A specially-designed trailer to measure rolling resistance has been used. The test sections were both rural roads and an abandoned airfield equipped with water film sensors mounted in the pavement. Results indicate strong influence of test speed and water film depth, as well as influence of surface texture. The increase of rolling resistance on wet surfaces is caused by both hydrodynamic phenomena and cooling effect of water that decreases tire temperature thus increasing rolling resistance.展开更多
Three drums with different helical angles (15°, 20°, and 25°) were developed to investigate improved loading performance of the shearer drum. Nine trials were performed at different drum rotation spee...Three drums with different helical angles (15°, 20°, and 25°) were developed to investigate improved loading performance of the shearer drum. Nine trials were performed at different drum rotation speeds (80, 100, and 120 r/min) and different haulage speeds (1.5, 2.0, and 2.5 m/min) in an orthogonal test design. Loaded coal quantity and cutting power of the drum were the responses measured under the dif- ferent conditions. The effect of the parameters was determined by means of the extreme difference method. The significance of the effects was determined by analysis of variance. The results indicate that the effect from changes in the helical vane on loading performance of the drum is the largest in magnitude. The haulage speed has the least affect on loading performance. The helical angle has the least affect on cutting power of the drum. Haulage speed has the largest affect on the cutting power of the drum. 2011 Published by Elsevier B.V. on behalf of China University of Mining & Technology.展开更多
A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulat...A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km.展开更多
There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters eac...There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters each cell must contain only one seed. Therefore, sliding the seed to the cell is important and depends on several parameters such as seed repose angle, seed dimensions and physics of cell. To help the seed to repose in the cell, making a groove on the roller would be very useful. Dimensions of this groove are very important and are considered as basic design parameters. This research was performed to determine some design parameters such as roller speed, travel speed, length and depth of groove for tomato seeds precision planting. In this regard, seeds with a diameter of 4 mm were used. The range of variation was based on calculations obtained. A roller with 42 mm width, 118 mm diameter and 15 cells on the surface was used in the experiment. For each cell, a triangular groove was created on the roller. The groove depth varied from zero at the beginning to the maximum value where the groove connected to the cell. The test unit had a continued and wide belt with 1 l m length. In each replication, planter worked for 20 s to reach a stable state. Thereafter, seeds were allowed to drop on the grease belt. Number of seeds and their spacing were measured on the 4.5 m of the belt. Results showed that the roller speed of 41.5 rpm, the planter travel speed of approximately 1 km/h, groove length of 6-8 mm and groove depth of 1.5 mm can improve planter performance for tomato pelleted seed.展开更多
A dual-phase Zr-2.5 Nb alloy was rolled at room temperature to 50% reduction and then annealed at two temperatures(560 and580°C) near the monotectoid temperature. X-ray diffraction, electron channeling contrast i...A dual-phase Zr-2.5 Nb alloy was rolled at room temperature to 50% reduction and then annealed at two temperatures(560 and580°C) near the monotectoid temperature. X-ray diffraction, electron channeling contrast imaging and electron backscatter diffraction techniques were jointly used to characterize microstructural characteristics developed in the as-rolled and annealed specimens. Results show that plastic deformation occurs in both bulk α-Zr grains and thin β-Zr films during rolling, allowing large lattice strains to be accumulated in β-Zr and active dislocation slip(especially the prismatic áa?slip) to be initiated in α-Zr. During subsequent annealing at 580°C, the prior β-Zr films are transformed into submicron β-Zr particles, which lose coherency(the Burgers orientation relationship) with surrounding α grains. In the specimen annealed at 560°C, however, the prior β-Zr films are found to be decomposed into nanoscale β-Nb particles. In both the annealed specimens, the β-Zr and the β-Nb particles appeared to be linearly distributed along the rolling direction. Two types of α structures, i.e., small equiaxed crystallites formed by recovery of dislocation structures and coarse bamboo-like recrystallized grains, are revealed in the annealed specimens. Effective boundary pinning due to the dense β-phase particles is demonstrated to play a key role in forming such unusual bamboo-like grains.展开更多
This paper theoretically investigates the effects of stick-slip in roiling contact zone on stress intensity factors (SIFs) for sub- surface short cracks. New mathematical models for SIFs including stick-slip ratio a...This paper theoretically investigates the effects of stick-slip in roiling contact zone on stress intensity factors (SIFs) for sub- surface short cracks. New mathematical models for SIFs including stick-slip ratio are deduced in two cases. One is a subsur- face short crack parallel to surface, and the numerical analysis shows that the value of Kn increases with the increase of stick-slip ratio; the other is a subsurface short crack perpendicular to the surface, and the numerical analysis indicates that the positive value of KI decreases with the increase of stick-slip ratio. As AKI and AKI are necessary to evaluate the fa- tigue crack propagation rate or fatigue lifetime, the influences of stick-slip ratio on them are then discussed. It is found that the maximum variations of AK1 and AKu are both around 3.0% due to stick-slip ratio variation.展开更多
Thermally activated delayed fluorescence(TADF) sensitized fluorescent organic light-emitting diodes(TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency rolloff and good col...Thermally activated delayed fluorescence(TADF) sensitized fluorescent organic light-emitting diodes(TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency rolloff and good color purity. However, the superior examples of TSF-OLEDs are still limited up to now.Herein, a trade-off strategy is presented for designing efficient TADF materials and achieving highperformance TSF-OLEDs via the construction of a new type of triazolotriazine(TAZTRZ) acceptor. The enhanced electron-withdrawing ability of TAZTRZ acceptor, fused by triazine(TRZ) and triazole(TAZ)together, enables TADF luminogens with small singlet-triplet energy gap(ΔE_(ST)) values. Meanwhile, the increased planarity from the TRZ-phenyl linkage(6:6 system) to the TAZ-phenyl linkage(5:6 system)can compensate the decrease of oscillator strength(f) while lowing ΔE_(ST), thus achieving a trade-off between small ΔE_(ST) and high f. As a result, the related TSF-OLED achieved an extremely low turn-on voltage of 2.1 V, an outstanding maximum external quantum efficiency(EQEmax) of 23.7% with small efficiency roll-off(EQE1000 of 23.2%;EQE5000 of 20.6%) and an impressively high maximum power efficiency of 82.1 lm W^(-1), which represents the state-of-the-art performance for yellow TSF-OLEDs.展开更多
Time-varying stiffness is one of the most important dynamic characteristics of rolling element bearings.The method of analyzing the elements in the bearing stiffness matrix is usually adopted to investigate the charac...Time-varying stiffness is one of the most important dynamic characteristics of rolling element bearings.The method of analyzing the elements in the bearing stiffness matrix is usually adopted to investigate the characteristics of bearing stiffness.Linear mapping structure of the bearing stiffness matrix is helpful to understand the varying compliance excitation and its influence on vibration transmission.In this study,a method to analyze the mapping structure of bearing stiffness matrix is proposed based on the singular value decomposition of block matrices in the stiffness matrix.Not only does this method have the advantages of coordinate transformation independence and unit independence,but also the analysis procedure involved is geometrically intuitive.The time-varying stiffness matrix of double-row tapered bearing is calculated and analyzed using the proposed method under two representative load cases.The principal stiffnesses and principal axes defined in the method together indicate the dominant and insignificant stiffness properties with the corresponding directions,and the vibration transmission properties are also revealed.Besides,the coupling behaviors between different shaft motions are found during the analysis of mapping structure.The mechanism of the generation of varying compliance excitation is also revealed.展开更多
基金Project(11472311)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University of ChinaProject(2015zzts083)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘Acoupled biharmonic spline and linear interpolation algorithm was proposed to create a three-dimensional smooth deposit model with minimal curvature containing grade and position data. To obtain the optimal technical parameters, such as cuttingheight and drum diameter, a virtual longwall mining procedure was modelled by simulating the actual fully mechanized longwall mining process. Based on the above work, a bauxite deposit in a longwall mining panel was modelled by scattered grade data from ores sampled on the entry wall. The deposit was then demarcated by industrial indexes and sliced according to the virtual longwallmining procedure. The results show that the proposed interpolation algorithm can depict the stratiform structure of bauxite depositsand that the uncovered bauxite deposit has high proportions of high-grade and rich ore. The ranges of optimal cutting height and drum diameters are 1.72-2.84 m and 1.42-1.72 m, respectively. Finally, an intellectualized longwall mining procedure was designed to guide the mining process with the lowest dilution and loss rates.
基金Project(50975095)supported by the National Natural Science Foundation of ChinaProject(2012ZM0048)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.
文摘Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.
基金Project(51975012)supported by the National Natural Science Foundation of ChinaProject(Z1511000003150138)supported by the Beijing Nova Program,China+1 种基金Project(Z191100001119010)supported by the Shanghai Sailing Program,ChinaProject(2018ZX04033001-003)supported by the National Science and Technology Major Project,China。
文摘The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss considering different given axial loading and rotational speed working conditions was investigated.Since creep and lubrication relate to sliding and rolling motion wear,the creep and lubrication characteristics are analyzed under different working conditions.Besides,the precision loss was calculated considering the sole influence of sliding behavior between ball and screw and compared with the results from other current models.Finally,research on precision loss owing to the sliding-rolling mixed motion behavior was realized under given working conditions,and suitable wear tests were carried out.The analytical results of precision loss are in good agreement with the experimental test conclusions,which is conducive to better predicting the law of precision loss in stable wear period.
基金Project(51775059)supported by the National Natural Science Foundation of ChinaProject(2017YFB1300700)supported by the National Key Research&Development Program of China。
文摘Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based on this model,the rotational accuracy and load distribution of CRBs under constraints of geometry and external loads were derived.The fatigue life of CRBs with roundness error was calculated by applying Palmgren-Miner linear cumulative damage theory.The influence of inner and outer raceway roundness error on the performance of the CRBs,such as rotational accuracy,load distribution,and fatigue life,was studied through the analysis of examples.The results indicate that the influence of roundness error on the rotating inner raceway is more significant than that of roundness error on the nonrotating outer raceway.The roundness error on the rotating inner raceway always degrades the performance of CRBs.However,a proper roundness error on the nonrotating outer raceway can reduce the loads acting on the rollers and thus improve the fatigue life of CRBs.The effect of the roundness error amplitude on the bearing performance is ordinal,whereas the effect of the roundness order on the bearing performance is not in order.
基金Project(2016ZE53046)supported by the Aviation Science Foundation of ChinaProject(201606295009)supported by the China Scholarship CouncilProject supported by Top International University Visiting Program for Outstanding Young Scholars of Northwestern Polytechnical University,China
文摘A solution-treated AZ91 bulk material was deep-surface-rolled at room temperature to investigate the effect of deep surface rolling on the microstructure and mechanical properties of the alloy. Microhardness and microstructure along the depth of the treated surface layer were characterized. The results show that the affected layer was up to 2.0 mm thick and consisted of three sublayers: a severe deformation layer with thickness of about 400 μm from the topmost surface, a medium deformation layer with thickness of around 600 μm and a small deformation layer up to 1000 μm thick. In addition to grain refinement in the deformation layer, strain-induced precipitation of β phase (Mg17Al12) was observed, particularly in the severe and medium deformation layers. It is believed that the cooperative effects of grain refinement, strain hardening and precipitation strengthening led to the significant increase in hardness of the AZ91 alloy after the deep surface rolling.
基金Projects(City U 11201315,T32-101/15-R)supported by the Research Grants Council of the Hong Kong Special Administrative Region,China
文摘Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 50575054)
文摘Nonlinear forces and moments caused by ball bearing were calculated based on relationship of displacement and deflection and quasi-dynamic model of bearing.Five-DOF dynamic equations of rotor supported by ball bearings were estimated.The Newmark-β method and Newton-Laphson method were used to solve the equations.The dynamic characteristics of rotor system were studied through the time response,the phase portrait,the Poincar?maps and the bifurcation diagrams.The results show that the system goes through the quasi-periodic bifurcation route to chaos as rotate speed increases and there are several quasi-periodic regions and chaos regions.The amplitude decreases and the dynamic behaviors change as the axial load of ball bearing increases;the initial contact angle of ball bearing affects dynamic behaviors of the system obviously.The system can avoid non-periodic vibration by choosing structural parameters and operating parameters reasonably.
基金Project(2007AA04Z408) supported by the National High-Tech Research and Development Program of ChinaProject(50735006) supported by the National Natural Science Foundation of China
文摘The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations with different thicknesses and elastic modulus ratios of coating to substrate were introduced, and the effects of thickness and elastic modulus ratio on the stresses were addressed. The calculation results show that the coating/substrate interface shear stress obviously decreases with increasing coating thickness, due to the location of the maximum shear stress moving away from the coating/substrate interface. At the same time, the magnitude of von Mises stress also declines in the case of thicker coatings. However, the high elastic modulus ratio results in extremely high maximum shear stress and the severe discontinuity of the von Mises stress curves, which leads to the intensive stress concentration on the coating/substrate interface. So the coating configurations with the larger coating thickness and lower difference of elastic modulus between coating and substrate exhibit excellent resistant performance of rolling contact fatigue (RCF).
文摘Rolling resistance of tires is one of the most important factors influencing energy consumption of road vehicles, especially on rural roads. For practical reasons, most of rolling resistance measurements are usually performed for dry road conditions. Based on the fact that roads are wet during a considerable time over the year and as part of the projects MIR/AM, ROLRES and ROSANNE, the TUG (Technical University of Gdafisk) in Poland and VTI (Swedish National Road and Transport Research Institute) in Sweden carried out trailer rolling resistance measurements on wet road surfaces to investigate water film influence on rolling resistance on different pavements. A specially-designed trailer to measure rolling resistance has been used. The test sections were both rural roads and an abandoned airfield equipped with water film sensors mounted in the pavement. Results indicate strong influence of test speed and water film depth, as well as influence of surface texture. The increase of rolling resistance on wet surfaces is caused by both hydrodynamic phenomena and cooling effect of water that decreases tire temperature thus increasing rolling resistance.
基金support for this work was provided by the National Natural Science Foundation of China (No. 51005232)the China Postdoctoral Science Foundation (No. 20100481176)
文摘Three drums with different helical angles (15°, 20°, and 25°) were developed to investigate improved loading performance of the shearer drum. Nine trials were performed at different drum rotation speeds (80, 100, and 120 r/min) and different haulage speeds (1.5, 2.0, and 2.5 m/min) in an orthogonal test design. Loaded coal quantity and cutting power of the drum were the responses measured under the dif- ferent conditions. The effect of the parameters was determined by means of the extreme difference method. The significance of the effects was determined by analysis of variance. The results indicate that the effect from changes in the helical vane on loading performance of the drum is the largest in magnitude. The haulage speed has the least affect on loading performance. The helical angle has the least affect on cutting power of the drum. Haulage speed has the largest affect on the cutting power of the drum. 2011 Published by Elsevier B.V. on behalf of China University of Mining & Technology.
基金Projects(50974039,50634030) supported by the National Natural Science Foundation of China
文摘A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km.
文摘There are many design parameters in precision planters to be considered such as cell diameter, peripheral speed of roller, number of cells, manner of feeding seeds into cell and travel speed. In precision planters each cell must contain only one seed. Therefore, sliding the seed to the cell is important and depends on several parameters such as seed repose angle, seed dimensions and physics of cell. To help the seed to repose in the cell, making a groove on the roller would be very useful. Dimensions of this groove are very important and are considered as basic design parameters. This research was performed to determine some design parameters such as roller speed, travel speed, length and depth of groove for tomato seeds precision planting. In this regard, seeds with a diameter of 4 mm were used. The range of variation was based on calculations obtained. A roller with 42 mm width, 118 mm diameter and 15 cells on the surface was used in the experiment. For each cell, a triangular groove was created on the roller. The groove depth varied from zero at the beginning to the maximum value where the groove connected to the cell. The test unit had a continued and wide belt with 1 l m length. In each replication, planter worked for 20 s to reach a stable state. Thereafter, seeds were allowed to drop on the grease belt. Number of seeds and their spacing were measured on the 4.5 m of the belt. Results showed that the roller speed of 41.5 rpm, the planter travel speed of approximately 1 km/h, groove length of 6-8 mm and groove depth of 1.5 mm can improve planter performance for tomato pelleted seed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51401040,51371202,51531005&51421001)the Fundamental and Cutting-Edge Research Plan of Chongqing(Grant No.cstc2017jcyjAX0114)
文摘A dual-phase Zr-2.5 Nb alloy was rolled at room temperature to 50% reduction and then annealed at two temperatures(560 and580°C) near the monotectoid temperature. X-ray diffraction, electron channeling contrast imaging and electron backscatter diffraction techniques were jointly used to characterize microstructural characteristics developed in the as-rolled and annealed specimens. Results show that plastic deformation occurs in both bulk α-Zr grains and thin β-Zr films during rolling, allowing large lattice strains to be accumulated in β-Zr and active dislocation slip(especially the prismatic áa?slip) to be initiated in α-Zr. During subsequent annealing at 580°C, the prior β-Zr films are transformed into submicron β-Zr particles, which lose coherency(the Burgers orientation relationship) with surrounding α grains. In the specimen annealed at 560°C, however, the prior β-Zr films are found to be decomposed into nanoscale β-Nb particles. In both the annealed specimens, the β-Zr and the β-Nb particles appeared to be linearly distributed along the rolling direction. Two types of α structures, i.e., small equiaxed crystallites formed by recovery of dislocation structures and coarse bamboo-like recrystallized grains, are revealed in the annealed specimens. Effective boundary pinning due to the dense β-phase particles is demonstrated to play a key role in forming such unusual bamboo-like grains.
基金supported by the National Science and Technology Supporting Program(Grant No.2011BAF09B01)
文摘This paper theoretically investigates the effects of stick-slip in roiling contact zone on stress intensity factors (SIFs) for sub- surface short cracks. New mathematical models for SIFs including stick-slip ratio are deduced in two cases. One is a subsur- face short crack parallel to surface, and the numerical analysis shows that the value of Kn increases with the increase of stick-slip ratio; the other is a subsurface short crack perpendicular to the surface, and the numerical analysis indicates that the positive value of KI decreases with the increase of stick-slip ratio. As AKI and AKI are necessary to evaluate the fa- tigue crack propagation rate or fatigue lifetime, the influences of stick-slip ratio on them are then discussed. It is found that the maximum variations of AK1 and AKu are both around 3.0% due to stick-slip ratio variation.
基金This work was supported by the National Natural Science Foundation of China(21432005)the Fundamental Research Funds for the Central Universities and the Comprehensive Training Platform Specialized Laboratory,College of Chemistry,Sichuan University。
文摘Thermally activated delayed fluorescence(TADF) sensitized fluorescent organic light-emitting diodes(TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency rolloff and good color purity. However, the superior examples of TSF-OLEDs are still limited up to now.Herein, a trade-off strategy is presented for designing efficient TADF materials and achieving highperformance TSF-OLEDs via the construction of a new type of triazolotriazine(TAZTRZ) acceptor. The enhanced electron-withdrawing ability of TAZTRZ acceptor, fused by triazine(TRZ) and triazole(TAZ)together, enables TADF luminogens with small singlet-triplet energy gap(ΔE_(ST)) values. Meanwhile, the increased planarity from the TRZ-phenyl linkage(6:6 system) to the TAZ-phenyl linkage(5:6 system)can compensate the decrease of oscillator strength(f) while lowing ΔE_(ST), thus achieving a trade-off between small ΔE_(ST) and high f. As a result, the related TSF-OLED achieved an extremely low turn-on voltage of 2.1 V, an outstanding maximum external quantum efficiency(EQEmax) of 23.7% with small efficiency roll-off(EQE1000 of 23.2%;EQE5000 of 20.6%) and an impressively high maximum power efficiency of 82.1 lm W^(-1), which represents the state-of-the-art performance for yellow TSF-OLEDs.
基金the Joint Funds of the National Natural Science Foundation of China(Grant No.U1834202).
文摘Time-varying stiffness is one of the most important dynamic characteristics of rolling element bearings.The method of analyzing the elements in the bearing stiffness matrix is usually adopted to investigate the characteristics of bearing stiffness.Linear mapping structure of the bearing stiffness matrix is helpful to understand the varying compliance excitation and its influence on vibration transmission.In this study,a method to analyze the mapping structure of bearing stiffness matrix is proposed based on the singular value decomposition of block matrices in the stiffness matrix.Not only does this method have the advantages of coordinate transformation independence and unit independence,but also the analysis procedure involved is geometrically intuitive.The time-varying stiffness matrix of double-row tapered bearing is calculated and analyzed using the proposed method under two representative load cases.The principal stiffnesses and principal axes defined in the method together indicate the dominant and insignificant stiffness properties with the corresponding directions,and the vibration transmission properties are also revealed.Besides,the coupling behaviors between different shaft motions are found during the analysis of mapping structure.The mechanism of the generation of varying compliance excitation is also revealed.