The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic...The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic curves were obtained under sliding and rolling movements at point contact. A new model for calculation of the friction coefficient was presented. The results show that the bigger the load is, the larger the friction coefficient becomes. The rolling speed ranging from 1 m/s to10 m/s has an important effect on the friction coefficient. The friction coefficient increases with the increase in sliding speed and the decrease in rolling speed. The linear variation region of the friction coefficient versus the sliding speed at high rolling speed is wider than that at low rolling speed. The model for calculation of the friction coefficient is accurate for engineering use.展开更多
This paper theoretically investigates the effects of stick-slip in roiling contact zone on stress intensity factors (SIFs) for sub- surface short cracks. New mathematical models for SIFs including stick-slip ratio a...This paper theoretically investigates the effects of stick-slip in roiling contact zone on stress intensity factors (SIFs) for sub- surface short cracks. New mathematical models for SIFs including stick-slip ratio are deduced in two cases. One is a subsur- face short crack parallel to surface, and the numerical analysis shows that the value of Kn increases with the increase of stick-slip ratio; the other is a subsurface short crack perpendicular to the surface, and the numerical analysis indicates that the positive value of KI decreases with the increase of stick-slip ratio. As AKI and AKI are necessary to evaluate the fa- tigue crack propagation rate or fatigue lifetime, the influences of stick-slip ratio on them are then discussed. It is found that the maximum variations of AK1 and AKu are both around 3.0% due to stick-slip ratio variation.展开更多
基金supported by the National Science Foundation of China (51105131)the Excellent Youth Foundation of Henan Scientific Committee (12410050002)the Creative Talent Foundation at Universities of Henan Province (2011HASTIT1016)
文摘The friction coefficients between the surfaces of a ball and a disc lubricated by a space lubricating oil No.4129 were measured at various operating conditions on a ball-disc friction test rig. Friction characteristic curves were obtained under sliding and rolling movements at point contact. A new model for calculation of the friction coefficient was presented. The results show that the bigger the load is, the larger the friction coefficient becomes. The rolling speed ranging from 1 m/s to10 m/s has an important effect on the friction coefficient. The friction coefficient increases with the increase in sliding speed and the decrease in rolling speed. The linear variation region of the friction coefficient versus the sliding speed at high rolling speed is wider than that at low rolling speed. The model for calculation of the friction coefficient is accurate for engineering use.
基金supported by the National Science and Technology Supporting Program(Grant No.2011BAF09B01)
文摘This paper theoretically investigates the effects of stick-slip in roiling contact zone on stress intensity factors (SIFs) for sub- surface short cracks. New mathematical models for SIFs including stick-slip ratio are deduced in two cases. One is a subsur- face short crack parallel to surface, and the numerical analysis shows that the value of Kn increases with the increase of stick-slip ratio; the other is a subsurface short crack perpendicular to the surface, and the numerical analysis indicates that the positive value of KI decreases with the increase of stick-slip ratio. As AKI and AKI are necessary to evaluate the fa- tigue crack propagation rate or fatigue lifetime, the influences of stick-slip ratio on them are then discussed. It is found that the maximum variations of AK1 and AKu are both around 3.0% due to stick-slip ratio variation.