A dual-phase Zr-2.5 Nb alloy was rolled at room temperature to 50% reduction and then annealed at two temperatures(560 and580°C) near the monotectoid temperature. X-ray diffraction, electron channeling contrast i...A dual-phase Zr-2.5 Nb alloy was rolled at room temperature to 50% reduction and then annealed at two temperatures(560 and580°C) near the monotectoid temperature. X-ray diffraction, electron channeling contrast imaging and electron backscatter diffraction techniques were jointly used to characterize microstructural characteristics developed in the as-rolled and annealed specimens. Results show that plastic deformation occurs in both bulk α-Zr grains and thin β-Zr films during rolling, allowing large lattice strains to be accumulated in β-Zr and active dislocation slip(especially the prismatic áa?slip) to be initiated in α-Zr. During subsequent annealing at 580°C, the prior β-Zr films are transformed into submicron β-Zr particles, which lose coherency(the Burgers orientation relationship) with surrounding α grains. In the specimen annealed at 560°C, however, the prior β-Zr films are found to be decomposed into nanoscale β-Nb particles. In both the annealed specimens, the β-Zr and the β-Nb particles appeared to be linearly distributed along the rolling direction. Two types of α structures, i.e., small equiaxed crystallites formed by recovery of dislocation structures and coarse bamboo-like recrystallized grains, are revealed in the annealed specimens. Effective boundary pinning due to the dense β-phase particles is demonstrated to play a key role in forming such unusual bamboo-like grains.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51401040,51371202,51531005&51421001)the Fundamental and Cutting-Edge Research Plan of Chongqing(Grant No.cstc2017jcyjAX0114)
文摘A dual-phase Zr-2.5 Nb alloy was rolled at room temperature to 50% reduction and then annealed at two temperatures(560 and580°C) near the monotectoid temperature. X-ray diffraction, electron channeling contrast imaging and electron backscatter diffraction techniques were jointly used to characterize microstructural characteristics developed in the as-rolled and annealed specimens. Results show that plastic deformation occurs in both bulk α-Zr grains and thin β-Zr films during rolling, allowing large lattice strains to be accumulated in β-Zr and active dislocation slip(especially the prismatic áa?slip) to be initiated in α-Zr. During subsequent annealing at 580°C, the prior β-Zr films are transformed into submicron β-Zr particles, which lose coherency(the Burgers orientation relationship) with surrounding α grains. In the specimen annealed at 560°C, however, the prior β-Zr films are found to be decomposed into nanoscale β-Nb particles. In both the annealed specimens, the β-Zr and the β-Nb particles appeared to be linearly distributed along the rolling direction. Two types of α structures, i.e., small equiaxed crystallites formed by recovery of dislocation structures and coarse bamboo-like recrystallized grains, are revealed in the annealed specimens. Effective boundary pinning due to the dense β-phase particles is demonstrated to play a key role in forming such unusual bamboo-like grains.