Objective: To investigate the specific blockage effect of individual antisense RNA on mutant p53 gene in vitro. Methods: The single strand antisense transcription system containing mt-p53 exon 8 sequence (pGEM3zf(...Objective: To investigate the specific blockage effect of individual antisense RNA on mutant p53 gene in vitro. Methods: The single strand antisense transcription system containing mt-p53 exon 8 sequence (pGEM3zf(+/-)p53exon8) was constructed. The ligation of antisense RNAwith mt-p53 gene was confirmed by in situ hybridization; MDA-MB-231 human breast cancer cells were transfected with ASp53exon8'RNA cotionic liposome-mediated. Expression of mt-p53 protein was examined by immunocytochemical staining and Western blot. Cell proliferation was evaluated by MTT assay; Cell cycle distribution was determined by flow cytometry (FCM); Apoptosis was observed by TUNEL. Results: In transfected MDA-MB-231 cells, hybridization signals were observed in cytoplasm. ASp53exon8'RNA transfection induced inhibition of cell proliferation, G2/M phase arrest and increasing apoptotic rates. In addition, expression of p53 protein was down-regulated. Conclusion: pGEM3zf(+/-)p53exon8 was well constructed and ASp53exon8'RNA can block mt-p53 gene expression specifically and then inhibit MDA-MB-231 cell proliferation in vitro, which may serve as therapeutic means for human malignancy.展开更多
基金Key Project Fund of Basic Research, Tianjin Municipal Science and Technology Commission (No. 033801511), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2004–2005).
文摘Objective: To investigate the specific blockage effect of individual antisense RNA on mutant p53 gene in vitro. Methods: The single strand antisense transcription system containing mt-p53 exon 8 sequence (pGEM3zf(+/-)p53exon8) was constructed. The ligation of antisense RNAwith mt-p53 gene was confirmed by in situ hybridization; MDA-MB-231 human breast cancer cells were transfected with ASp53exon8'RNA cotionic liposome-mediated. Expression of mt-p53 protein was examined by immunocytochemical staining and Western blot. Cell proliferation was evaluated by MTT assay; Cell cycle distribution was determined by flow cytometry (FCM); Apoptosis was observed by TUNEL. Results: In transfected MDA-MB-231 cells, hybridization signals were observed in cytoplasm. ASp53exon8'RNA transfection induced inhibition of cell proliferation, G2/M phase arrest and increasing apoptotic rates. In addition, expression of p53 protein was down-regulated. Conclusion: pGEM3zf(+/-)p53exon8 was well constructed and ASp53exon8'RNA can block mt-p53 gene expression specifically and then inhibit MDA-MB-231 cell proliferation in vitro, which may serve as therapeutic means for human malignancy.