This paper gives a structural concept for linear interconnected control systems with multidelays,which is based on equivalence method of lyapunovs frequency area, a sufficient \{criteria\} is obtained for the intercon...This paper gives a structural concept for linear interconnected control systems with multidelays,which is based on equivalence method of lyapunovs frequency area, a sufficient \{criteria\} is obtained for the interconnected stabilization of linear constant control system with multidelays,at the same time,the estimation of bound both time delays and parametric perturbation are given.展开更多
In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuatio...In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuation.The inverse hysteresis compensator is employed to cancel the hysteresis nonlinearity,thus reducing the nonlinear system to a linear system with an inversion error.Then,a SMCPE controller is adopted to deal with all the unmodeled dynamics and disturbances,aiming at improving the dynamic performance and the robustness of system.An experiment of a piezoelectric actuator is presented to demonstrate the feasibility and effectiveness of the proposed control scheme.The result shows that for a fast-rate control input,the proposed method is capable of leading to a good performance of system behavior.展开更多
文摘This paper gives a structural concept for linear interconnected control systems with multidelays,which is based on equivalence method of lyapunovs frequency area, a sufficient \{criteria\} is obtained for the interconnected stabilization of linear constant control system with multidelays,at the same time,the estimation of bound both time delays and parametric perturbation are given.
基金supported by National Science Foundation of China under Grant No.61304097Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61321002Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1208
文摘In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuation.The inverse hysteresis compensator is employed to cancel the hysteresis nonlinearity,thus reducing the nonlinear system to a linear system with an inversion error.Then,a SMCPE controller is adopted to deal with all the unmodeled dynamics and disturbances,aiming at improving the dynamic performance and the robustness of system.An experiment of a piezoelectric actuator is presented to demonstrate the feasibility and effectiveness of the proposed control scheme.The result shows that for a fast-rate control input,the proposed method is capable of leading to a good performance of system behavior.