<Abstract>This paper reports the seasonal feature of the relationship between ENSO and the stratospheric Polar Vortex Oscillation (PVO) variability in the Northern Hemisphere.It is shown that the lagged ENSO-PVO...<Abstract>This paper reports the seasonal feature of the relationship between ENSO and the stratospheric Polar Vortex Oscillation (PVO) variability in the Northern Hemisphere.It is shown that the lagged ENSO-PVO coupling relationship exhibits distinct seasonal feature,due to the strong seasonality of PVO and ENSO.Specifically,the PVO variability not only during winter,but also in autumn and spring months,is significantly correlated with ENSO anomalies leading by seasons;however,no significant effect of ENSO is found on the PVO variability in winter months of November and February.Although a significant ENSO effect is primarily observed when ENSO leads PVO by about one year,a significant correlation is also found between PVO in the following spring months (M +1 A +1) and ENSO anomalies in the previous autumn (A-1 S-1 O- 1 N -1) when ENSO anomalies lead by about 18 months.The significant correlation between PVO in various seasons and the corresponding ENSO anomalies leading by seasons could be explicitly verified in most of the individual years,confirming that the lagged ENSO effect can largely modulate the seasonal timescale variability of PVO.Moreover,the composite spatial patterns of the zonal-mean temperature anomalies further show that the ENSO effect on the PVO in various seasons is related to the interannual variability of the seasonal timescale PVO events.展开更多
The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swar...The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swarm is better represented. In this paper,the cell model and its development were reviewed, and themodifications of outer cell boundary conditions were suggested. Atthe cell outer boundary, the restriction of uniform liquid flow wasremoved in our simulation conducted in the reference frame fixed withthe particle.展开更多
An empirical hybrid shock absorber model capable of capturing nonlinear and hysteresis characteristics of shock absorbers is built.The nonlinear characteristics are modeled by algebraic function and the hysteresis eff...An empirical hybrid shock absorber model capable of capturing nonlinear and hysteresis characteristics of shock absorbers is built.The nonlinear characteristics are modeled by algebraic function and the hysteresis effects between shock force and shock velocity are modeled by neural network.To develop the empirical hybrid shock absorber model,a Mazda CX-7 front shock absorber is tested by a displacement-controlled hydraulic shock absorber testing machine.The hybrid shock absorber model is built and validated using the experimental shock absorber data.The RMS value for the hybrid shock absorber model is 60.28N at the velocity range from-1.3m/s to 1.3m/s.展开更多
We focus on the hysteretic characteristics of the varying compliance(VC) principal resonance in a ball bearing. The branches of the periodic VC response are traced by the harmonic balance method and the alternating fr...We focus on the hysteretic characteristics of the varying compliance(VC) principal resonance in a ball bearing. The branches of the periodic VC response are traced by the harmonic balance method and the alternating frequency/time domain technique(HB-AFT) embedding Arc-length continuation, and the stability of these solutions is investigated by using Floquet theory. We find that the resonant response displays a swallow-tail structure due to the coupling nonlinearities between the Hertzian contact and the bearing clearance, which differs from the soft hysteresis of the non-loss Hertzian contact resonances. Furthermore, we find that period-1 VC branch cannot completely characterize the response of the system for a large bearing clearance, because multiple instability regions may occur from the cyclic fold, the secondary Hopf bifurcations, supercritical and subcritical period doubling bifurcations, in which case co-existences of period-1, period-2, and even quasi-periodic VC motions emerge in the hysteretic resonant range.展开更多
Based on the daily NCEP/DOE reanalysis II data,dates of the boreal spring Stratospheric Final Warming(SFW) events during 1979–2010 are defined as the time when the zonal-mean zonal wind at the central latitudes(65...Based on the daily NCEP/DOE reanalysis II data,dates of the boreal spring Stratospheric Final Warming(SFW) events during 1979–2010 are defined as the time when the zonal-mean zonal wind at the central latitudes(65°–75°N) of the westerly polar jet drops below zero and never recovers until the subsequent autumn.It is found that the SFW events occur successively from the mid to the lower stratosphere and averagely from the mid to late April with a temporal lag of about 13 days from 10 to 50 hPa.Over the past 32 years,the earliest SFW occurs in mid March whereas the latest SFW happens in late May,showing a clear interannual variability of the time of SFW.Accompanying the SFW onset,the stratospheric circulation transits from a winter dynamical regime to a summertime state,and the maximum negative tendency of zonal wind and the strongest convergence of planetary-wave are observed.Composite results show that the early/late SFW events in boreal spring correspond to a quicker/slower transition of the stratospheric circulation,with the zonal-mean zonal wind reducing about 20/5 m s-1 at 30 hPa within 10 days around the onset date.Meanwhile,the planetary wave activities are relatively strong/weak associating with an out-of-/in-phase circumpolar circulation anomaly before and after the SFW events in the stratosphere.All these results indicate that,the earlier breakdown of the stratospheric polar vortex(SPV),as for the winter stratospheric sudden warming(SSW) events is driven mainly by wave forcing;and in contrast,the later breakdown of the SPV exhibits more characteristics of its seasonal evolution.Nevertheless,after the breakdown of SPV,the polar temperature anomalies always exhibit an out-of-phase relationship between the stratosphere and the troposphere for both the early and late SFW events,which implies an intimate stratosphere–troposphere dynamical coupling in spring.In addition,there exists a remarkable interdecadal change of the onset time of SFW in the mid 1990s.On average,the SFW onset time before the mid 1990s is 11 days earlier than that afterwards,corresponding to the increased/decreased planetary wave activities in late winter-early spring before/after the 1990s.展开更多
基金supported by the National Basic Research Program of China under Grants 2010CB428603and2010CB950400100 Talents Program of the Chinese Academy of Sciences under Grant KZCX2-YW-BR-14
文摘<Abstract>This paper reports the seasonal feature of the relationship between ENSO and the stratospheric Polar Vortex Oscillation (PVO) variability in the Northern Hemisphere.It is shown that the lagged ENSO-PVO coupling relationship exhibits distinct seasonal feature,due to the strong seasonality of PVO and ENSO.Specifically,the PVO variability not only during winter,but also in autumn and spring months,is significantly correlated with ENSO anomalies leading by seasons;however,no significant effect of ENSO is found on the PVO variability in winter months of November and February.Although a significant ENSO effect is primarily observed when ENSO leads PVO by about one year,a significant correlation is also found between PVO in the following spring months (M +1 A +1) and ENSO anomalies in the previous autumn (A-1 S-1 O- 1 N -1) when ENSO anomalies lead by about 18 months.The significant correlation between PVO in various seasons and the corresponding ENSO anomalies leading by seasons could be explicitly verified in most of the individual years,confirming that the lagged ENSO effect can largely modulate the seasonal timescale variability of PVO.Moreover,the composite spatial patterns of the zonal-mean temperature anomalies further show that the ENSO effect on the PVO in various seasons is related to the interannual variability of the seasonal timescale PVO events.
基金Supported by the National Natural Science Foundation of China (No. 29836130).
文摘The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swarm is better represented. In this paper,the cell model and its development were reviewed, and themodifications of outer cell boundary conditions were suggested. Atthe cell outer boundary, the restriction of uniform liquid flow wasremoved in our simulation conducted in the reference frame fixed withthe particle.
基金Supported by the National High Technology Research and Development Programme of China(No.2008AA11A143)
文摘An empirical hybrid shock absorber model capable of capturing nonlinear and hysteresis characteristics of shock absorbers is built.The nonlinear characteristics are modeled by algebraic function and the hysteresis effects between shock force and shock velocity are modeled by neural network.To develop the empirical hybrid shock absorber model,a Mazda CX-7 front shock absorber is tested by a displacement-controlled hydraulic shock absorber testing machine.The hybrid shock absorber model is built and validated using the experimental shock absorber data.The RMS value for the hybrid shock absorber model is 60.28N at the velocity range from-1.3m/s to 1.3m/s.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2015CB057400)the China Postdoctoral Science Foundation(Grant No.2013M541360)the National Natural Science Foundation of China(Grant Nos.10632040 and 11302058)
文摘We focus on the hysteretic characteristics of the varying compliance(VC) principal resonance in a ball bearing. The branches of the periodic VC response are traced by the harmonic balance method and the alternating frequency/time domain technique(HB-AFT) embedding Arc-length continuation, and the stability of these solutions is investigated by using Floquet theory. We find that the resonant response displays a swallow-tail structure due to the coupling nonlinearities between the Hertzian contact and the bearing clearance, which differs from the soft hysteresis of the non-loss Hertzian contact resonances. Furthermore, we find that period-1 VC branch cannot completely characterize the response of the system for a large bearing clearance, because multiple instability regions may occur from the cyclic fold, the secondary Hopf bifurcations, supercritical and subcritical period doubling bifurcations, in which case co-existences of period-1, period-2, and even quasi-periodic VC motions emerge in the hysteretic resonant range.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB428603 and 2010CB950400)National Natural Science Foundation of China(Grant No.41275094)
文摘Based on the daily NCEP/DOE reanalysis II data,dates of the boreal spring Stratospheric Final Warming(SFW) events during 1979–2010 are defined as the time when the zonal-mean zonal wind at the central latitudes(65°–75°N) of the westerly polar jet drops below zero and never recovers until the subsequent autumn.It is found that the SFW events occur successively from the mid to the lower stratosphere and averagely from the mid to late April with a temporal lag of about 13 days from 10 to 50 hPa.Over the past 32 years,the earliest SFW occurs in mid March whereas the latest SFW happens in late May,showing a clear interannual variability of the time of SFW.Accompanying the SFW onset,the stratospheric circulation transits from a winter dynamical regime to a summertime state,and the maximum negative tendency of zonal wind and the strongest convergence of planetary-wave are observed.Composite results show that the early/late SFW events in boreal spring correspond to a quicker/slower transition of the stratospheric circulation,with the zonal-mean zonal wind reducing about 20/5 m s-1 at 30 hPa within 10 days around the onset date.Meanwhile,the planetary wave activities are relatively strong/weak associating with an out-of-/in-phase circumpolar circulation anomaly before and after the SFW events in the stratosphere.All these results indicate that,the earlier breakdown of the stratospheric polar vortex(SPV),as for the winter stratospheric sudden warming(SSW) events is driven mainly by wave forcing;and in contrast,the later breakdown of the SPV exhibits more characteristics of its seasonal evolution.Nevertheless,after the breakdown of SPV,the polar temperature anomalies always exhibit an out-of-phase relationship between the stratosphere and the troposphere for both the early and late SFW events,which implies an intimate stratosphere–troposphere dynamical coupling in spring.In addition,there exists a remarkable interdecadal change of the onset time of SFW in the mid 1990s.On average,the SFW onset time before the mid 1990s is 11 days earlier than that afterwards,corresponding to the increased/decreased planetary wave activities in late winter-early spring before/after the 1990s.