The behaviors of inorganic nitrogen species in three types of bioretention columns under an intermittently wetting regime were investigated. The mean NH+4—N, NO-3—N and total N(TN) removal efficiencies for the conve...The behaviors of inorganic nitrogen species in three types of bioretention columns under an intermittently wetting regime were investigated. The mean NH+4—N, NO-3—N and total N(TN) removal efficiencies for the conventional bioretention column(Col. T1) are 71%, 1% and 41%, for layered bioretention column with less permeable soil layer(Col. T2) the efficiencies are 83%, 84% and 82%, and for the bioretention column with submerged zone(Col. T3) the values are 63%, 31% and 53%, respectively. The best nitrogen removal is obtained using Col. T2 with relatively low infiltration rate. Adsorption during runoff dosing and nitrification during the drying period are the primary NH+4—N removal pathways. Less permeable soil and the elevated outlet promote the formation of anoxic conditions. 30%–70% of NO-3—N applied to columns in a single repetition is denitrified during the draining period, suggesting that the draining period is an important timeframe for the removal of NO-3—N. Infiltration rate controls the contact time with media during the draining periods, greatly influencing the NO-3—N removal effects. Bioretention systems with infiltration rate ranging from 3 to 7 cm/h have a great potential to remove NO-3—N.展开更多
基金Project(2011ZX07303-002)supported by National Water Pollution Control and Management Technology Major Program,China
文摘The behaviors of inorganic nitrogen species in three types of bioretention columns under an intermittently wetting regime were investigated. The mean NH+4—N, NO-3—N and total N(TN) removal efficiencies for the conventional bioretention column(Col. T1) are 71%, 1% and 41%, for layered bioretention column with less permeable soil layer(Col. T2) the efficiencies are 83%, 84% and 82%, and for the bioretention column with submerged zone(Col. T3) the values are 63%, 31% and 53%, respectively. The best nitrogen removal is obtained using Col. T2 with relatively low infiltration rate. Adsorption during runoff dosing and nitrification during the drying period are the primary NH+4—N removal pathways. Less permeable soil and the elevated outlet promote the formation of anoxic conditions. 30%–70% of NO-3—N applied to columns in a single repetition is denitrified during the draining period, suggesting that the draining period is an important timeframe for the removal of NO-3—N. Infiltration rate controls the contact time with media during the draining periods, greatly influencing the NO-3—N removal effects. Bioretention systems with infiltration rate ranging from 3 to 7 cm/h have a great potential to remove NO-3—N.