首先通过添加数据得到了左截断右删失数据下伽玛分布的完全数据似然函数,然后研究了变点位置和其它参数的满条件分布,接着利用Gibbs抽样与Metropolis-Hastings算法相结合的MCMC(Markov Chain Monte Carlo)方法得到了参数的Gibbs样本,把G...首先通过添加数据得到了左截断右删失数据下伽玛分布的完全数据似然函数,然后研究了变点位置和其它参数的满条件分布,接着利用Gibbs抽样与Metropolis-Hastings算法相结合的MCMC(Markov Chain Monte Carlo)方法得到了参数的Gibbs样本,把Gibbs样本的均值作为各参数的贝叶斯估计,随机模拟试验的结果表明各参数贝叶斯估计的精度都较高.展开更多
文摘首先通过添加数据得到了左截断右删失数据下伽玛分布的完全数据似然函数,然后研究了变点位置和其它参数的满条件分布,接着利用Gibbs抽样与Metropolis-Hastings算法相结合的MCMC(Markov Chain Monte Carlo)方法得到了参数的Gibbs样本,把Gibbs样本的均值作为各参数的贝叶斯估计,随机模拟试验的结果表明各参数贝叶斯估计的精度都较高.