期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
略论α—β—γ软件滤波器的设计与应用
1
作者 王存良 《电光系统》 2009年第3期51-53,共3页
在某项工程的试验数据处理中,发现存在较大的随机误差。为了减小随机误差,同时又不增加硬件设备,设计了α-β-γ软件滤波器。用标准C程序语言实现了它的滤波算法。源程序简洁,移植性好,适于数字信号处理器(DSP)应用。从试验数据... 在某项工程的试验数据处理中,发现存在较大的随机误差。为了减小随机误差,同时又不增加硬件设备,设计了α-β-γ软件滤波器。用标准C程序语言实现了它的滤波算法。源程序简洁,移植性好,适于数字信号处理器(DSP)应用。从试验数据滤波前后的对比可以看出此滤波效果很好,满足工程应用需要。 展开更多
关键词 软件滤波 Α-Β-Γ滤波 预测 滤波估值
下载PDF
一种用于雷达数字引导的卡尔曼滤波方法 被引量:1
2
作者 孙水玲 《无线电工程》 1996年第4期30-33,共4页
本文详细介绍了一种用于雷达数字引导的卡尔曼滤波方法。此方法通过坐标变换,在新的空间迪卡尔坐标系下进行卡尔曼滤波,模拟实验结果表明,这种方法大大减小在雷达测量坐标系下由数学模型线性化所带来的误差。使参数预测精度提高一到五... 本文详细介绍了一种用于雷达数字引导的卡尔曼滤波方法。此方法通过坐标变换,在新的空间迪卡尔坐标系下进行卡尔曼滤波,模拟实验结果表明,这种方法大大减小在雷达测量坐标系下由数学模型线性化所带来的误差。使参数预测精度提高一到五倍以上。 展开更多
关键词 卡尔曼滤波 滤波估值 预测 雷达
下载PDF
武装直升机IFFC系统目标状态估计器的设计与仿真探讨
3
作者 罗德林 《直升机技术》 2001年第4期27-30,共4页
目标状态估计器(TSE-Target State Estimator)是综合飞行/火力控制(IFFC-Integrated Flight and Fire Control)系统中的一个重要组成环节,它对测量的目标参数进行滤波估值,提高了火控系统的命中率。本文阐述了目标状态估计器的设计一般... 目标状态估计器(TSE-Target State Estimator)是综合飞行/火力控制(IFFC-Integrated Flight and Fire Control)系统中的一个重要组成环节,它对测量的目标参数进行滤波估值,提高了火控系统的命中率。本文阐述了目标状态估计器的设计一般方法,并以地面匀速运动的坦克为目标,对其进行了设计与仿真。 展开更多
关键词 武装直升机 IFFC系统 目标状态计器 滤波估值 火控系统 仿真设计
下载PDF
Application of adaptive Kalman filter in rocket impact point estimation 被引量:1
4
作者 闫小龙 陈国光 白敦卓 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期212-217,共6页
In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According... In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According to the particle trajectory model,the adaptive Kalman filter trajectory model was constructed for removing and filtering the outliers of the parameters during a section of flight detected by three-dimensional data radar and the rocket impact point was extrapolated.The results of numerical simulation show that the outliers and noise in trajectory measurement signal can be removed effectively by using the adaptive Kalman filter and the filter variance can converge in a short period of time.Based on the relation of filtering time and impact point estimation error,choosing the filtering time of 8-10 scan get the minimum estimation error of impact point. 展开更多
关键词 ROCKET adaptive Kalman filter OUTLIERS impact point estimation
下载PDF
ADAPTIVE ESTIMATING DETAIL PRESERVING FILTER FOR IMAGE PROCESSING
5
作者 李向吉 丁润涛 《Transactions of Tianjin University》 EI CAS 1998年第2期68-71,共4页
A new adaptive detail preserving filter for image processing is presented.By comparing the difference of the values evaluated in the different directions or regions,this filter can decide wh... A new adaptive detail preserving filter for image processing is presented.By comparing the difference of the values evaluated in the different directions or regions,this filter can decide which region (homogeneous region or detail region) the filtering pixels belong to and then apply different filtering schemes.This filter has better performance of noise filtering and detail preserving than the multistage median filter (MMF).It can be applied especially to the images simultaneously corrupted by Gaussian noise and impulsive noise,and is simple in computation and implementation. 展开更多
关键词 ESTIMATING detail preserving filtering adaptive filtering
下载PDF
THE RESEARCH OF GRADATION FUSION ALGORITHM BASED ON MULTISENSOR ASYNCHRONOUS SAMPLING SYSTEM 被引量:3
6
作者 Wen Chenglin Zhang Liantang Ge Quanbo 《Journal of Electronics(China)》 2005年第5期534-545,共12页
This letter explores the distributed multisensor dynamic system, which has uniform sampling velocity and asynchronous sampling data for different sensors, and puts forward a new gradation fusion algorithm of multisens... This letter explores the distributed multisensor dynamic system, which has uniform sampling velocity and asynchronous sampling data for different sensors, and puts forward a new gradation fusion algorithm of multisensor dynamic system. As the total forecasted increment value between the two adjacent moments is the forecasted estimate value of the corresponding state increment in the fusion center, the new algorithm models the state and the forecasted estimate value of every moment. Kalman filter and all measurements arriving sequentially in the fusion period are employed to update the evaluation of target state step by step, on the condition that the system has obtained the target state evaluation that is based on the overall information in the previous fusion period. Accordingly, in the present period, the fusion evaluation of the target state at each sampling point on the basis of the overall information can be obtained. This letter elaborates the form of this new algorithm. Computer simulation demonstrates that this new algorithm owns greater precision in estimating target state than the present asynchronous fusion algorithm calibrated in time does. 展开更多
关键词 Multisensor system Gradation fusion Asynchronous sampling Kalman filtering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部