This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightn...This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightness temperatures and a matchup database. To retrieve the wind vector, a chaotic particle swarm approach was used to determine a set of possible wind vector solutions which minimize the difference between the forward model and the WindSat observations. An adjusted circular median filtering function was adopted to remove wind direction ambiguity. The validation of the wind speed, wind direction, sea surface temperature, columnar atmospheric water vapor, and columnar liquid cloud water indicates that this algorithm is feasible and reasonable and can be used to retrieve these atmospheric and oceanic parameters. Compared with moored buoy data, the RMS errors for wind speed and sea surface temperature were 0.92 m s^(-1) and 0.88℃, respectively. The RMS errors for columnar atmospheric water vapor and columnar liquid cloud water were 0.62 mm and 0.01 mm, respectively, compared with F17 SSMIS results. In addition, monthly average results indicated that these parameters are in good agreement with AMSR-E results. Wind direction retrieval was studied under various wind speed conditions and validated by comparing to the Quik SCAT measurements, and the RMS error was 13.3?. This paper offers a new approach to the study of ocean wind vector retrieval using a polarimetric microwave radiometer.展开更多
The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive trea...The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
The authors propose a dwindling filter algorithm with Zhou's modified subproblem for nonlinear inequality constrained optimization.The feasibility restoration phase,which is always used in the traditional filter m...The authors propose a dwindling filter algorithm with Zhou's modified subproblem for nonlinear inequality constrained optimization.The feasibility restoration phase,which is always used in the traditional filter method,is not needed.Under mild conditions,global convergence and local superlinear convergence rates are obtained.Numerical results demonstrate that the new algorithm is effective.展开更多
This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The en...This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The envelope of the dwindling filter becomes thinner and thinner as the step size approaches zero. This new algorithm has more flexibility for the acceptance of the trial step and requires less computational costs compared with traditional filter algorithm. The global and local convergence of the proposed algorithm are given under some reasonable conditions. The numerical experiments are reported to show the effectiveness of the dwindling filter algorithm.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.41205013 and 41105012)
文摘This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightness temperatures and a matchup database. To retrieve the wind vector, a chaotic particle swarm approach was used to determine a set of possible wind vector solutions which minimize the difference between the forward model and the WindSat observations. An adjusted circular median filtering function was adopted to remove wind direction ambiguity. The validation of the wind speed, wind direction, sea surface temperature, columnar atmospheric water vapor, and columnar liquid cloud water indicates that this algorithm is feasible and reasonable and can be used to retrieve these atmospheric and oceanic parameters. Compared with moored buoy data, the RMS errors for wind speed and sea surface temperature were 0.92 m s^(-1) and 0.88℃, respectively. The RMS errors for columnar atmospheric water vapor and columnar liquid cloud water were 0.62 mm and 0.01 mm, respectively, compared with F17 SSMIS results. In addition, monthly average results indicated that these parameters are in good agreement with AMSR-E results. Wind direction retrieval was studied under various wind speed conditions and validated by comparing to the Quik SCAT measurements, and the RMS error was 13.3?. This paper offers a new approach to the study of ocean wind vector retrieval using a polarimetric microwave radiometer.
基金Supported by the National Natural Science Foundations of China(No.61300214,61170243)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+2 种基金the Science and Technology Research Key Project of Education Department of Henan Province(No.13A413066)the Basic and Frontier Technology Research Plan of Henan Province(No.132300410148)the Funding Scheme of Young Key Teacher of Henan Province Universities,and the Key Project of Teaching Reform Research of Henan University(No.HDXJJG2013-07)
文摘The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Nos.11201304,11371253)the Innovation Program of Shanghai Municipal Education Commission(No.12YZ174)the Group of Accounting and Governance Disciplines(No.10kq03)
文摘The authors propose a dwindling filter algorithm with Zhou's modified subproblem for nonlinear inequality constrained optimization.The feasibility restoration phase,which is always used in the traditional filter method,is not needed.Under mild conditions,global convergence and local superlinear convergence rates are obtained.Numerical results demonstrate that the new algorithm is effective.
基金supported by the National Natural Science Foundation of China under Grant Nos.11201304,11371253the Innovation Program of Shanghai Municipal Education Commission under Grant No.12YZ174Group of Accounting and Governance Disciplines(10kq03)
文摘This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The envelope of the dwindling filter becomes thinner and thinner as the step size approaches zero. This new algorithm has more flexibility for the acceptance of the trial step and requires less computational costs compared with traditional filter algorithm. The global and local convergence of the proposed algorithm are given under some reasonable conditions. The numerical experiments are reported to show the effectiveness of the dwindling filter algorithm.