Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher acc...Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher accuracy in recognition tasks is still open.Owing to spectral analysis in feature extraction,an adaptive bands filter bank (ABFB) is presented.The design adopts flexible bandwidths and center frequencies for the frequency responses of the filters and utilizes genetic algorithm (GA) to optimize the design parameters.The optimization process is realized by combining the front-end filter bank with the back-end recognition network in the performance evaluation loop.The deployment of ABFB together with zero-crossing peak amplitude (ZCPA) feature as a front process for radial basis function (RBF) system shows significant improvement in robustness compared with the Bark-scale filter bank.In ABFB,several sub-bands are still more concentrated toward lower frequency but their exact locations are determined by the performance rather than the perceptual criteria.For the ease of optimization,only symmetrical bands are considered here,which still provide satisfactory results.展开更多
State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modele...State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.展开更多
State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation pro...State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation process is proposed using cubature Kalman filter (CKF) to incorporate delayed measurements. The square-root version of CI(F (SCKF) algorithm is given and the system with delayed measurements is described. On this basis, the sample-state augmentation method for the SCKF algorithm is provided and the implementation of the proposed algorithm is constructed. Then a nonlinear state space model for fermentation process is established and the SCKF algorithm incorporating delayed measurements based on fermentation process model is presented to implement the nonlinear state estimation. Finally, the proposed nonlinear state estimation methodology is applied to the state estimation for penicillin and industrial yeast fermentation processes. The simulation results show that the on-fine state estimation for fermentation process can be achieved by the proposed method with higher esti- mation accuracy and better stability.展开更多
A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,whic...A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,which not only decreases the band width of sliding mode and strengthens the system robustness,but also improves the dynamic performance and stability capability of the system.Moreover,a discrete-time sliding mode control strategy based on Kalman filter method was designed,and Kalman filter was employed to eliminate the influence of system noise.Simulation results show that there is no chattering phenomenon in the output of controller and the state variables of controlled system,and the proposed algorithm is also feasible and has strong robustness to external disturbances.展开更多
The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but i...The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but it should not be used for estimating the state of a nonlinear system such as a satellite motion because it is difficult to obtain the desired estimation results.The linearized Kalman filtering approach and the extended Kalman filtering approach have been proposed for a general nonlinear system.The equations of satellite motion are described.The satellite motion states are estimated,and the relevant estimation errors are calculated through the estimation algorithms of the both above mentioned approaches implemented in Matlab are estimated.The performances of the extended Kalman filter and the linearized Kalman filter are compared.The simulation results show that the extended Kalman filter is much better than the linearized Kalman filter at the aspect of estimation effect.展开更多
On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the ta...On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.展开更多
Filtration is one of the most effective methods to remove suspended fine particles from air. In filtration processes,pressure drop of compact dust cake causes problems in efficiency and economy, which has received inc...Filtration is one of the most effective methods to remove suspended fine particles from air. In filtration processes,pressure drop of compact dust cake causes problems in efficiency and economy, which has received increasing attention and still remains challenging. In this study, we developed a novel technique to intensify the filtration of fine particles with efficient humidification. Two strategies for humidification, including ultrasonic atomization and steam humidification(controlling of ambient humidity), were employed and proved to be both effective. The regeneration frequency of the filter could be reduced by 55% with ultrasonic atomization, while steam humidification could lead to a 78% reduction in regeneration frequency. The effect of operating conditions on pressure drop and the mass loading during filtration were investigated. The dust cake showed a loose and porous structure with an optimized droplet-to-particle ratio. With the ratio of 1.53 and 0.0282, the maximum mass loading was 552 g·m-2upon the ultrasonic atomization and 720 g·m-2upon the steam humidification. The results show that humidification could slow down the increase of pressure drop during filtration and improve the efficiency of process.展开更多
基金Project(61072087) supported by the National Natural Science Foundation of ChinaProject(20093048) supported by Shanxi ProvincialGraduate Innovation Fund of China
文摘Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher accuracy in recognition tasks is still open.Owing to spectral analysis in feature extraction,an adaptive bands filter bank (ABFB) is presented.The design adopts flexible bandwidths and center frequencies for the frequency responses of the filters and utilizes genetic algorithm (GA) to optimize the design parameters.The optimization process is realized by combining the front-end filter bank with the back-end recognition network in the performance evaluation loop.The deployment of ABFB together with zero-crossing peak amplitude (ZCPA) feature as a front process for radial basis function (RBF) system shows significant improvement in robustness compared with the Bark-scale filter bank.In ABFB,several sub-bands are still more concentrated toward lower frequency but their exact locations are determined by the performance rather than the perceptual criteria.For the ease of optimization,only symmetrical bands are considered here,which still provide satisfactory results.
基金Supported by the National Natural Science Foundation of China (20476007, 20676013).
文摘State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.
基金Supported by the National Natural Science Foundation of China(61503019)the Beijing Natural Science Foundation(4152041)Beijing Higher Education Young Elite Teacher Project(YETP0504)
文摘State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation process is proposed using cubature Kalman filter (CKF) to incorporate delayed measurements. The square-root version of CI(F (SCKF) algorithm is given and the system with delayed measurements is described. On this basis, the sample-state augmentation method for the SCKF algorithm is provided and the implementation of the proposed algorithm is constructed. Then a nonlinear state space model for fermentation process is established and the SCKF algorithm incorporating delayed measurements based on fermentation process model is presented to implement the nonlinear state estimation. Finally, the proposed nonlinear state estimation methodology is applied to the state estimation for penicillin and industrial yeast fermentation processes. The simulation results show that the on-fine state estimation for fermentation process can be achieved by the proposed method with higher esti- mation accuracy and better stability.
基金Project(50721063) supported by the National Natural Science Foundation of China
文摘A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,which not only decreases the band width of sliding mode and strengthens the system robustness,but also improves the dynamic performance and stability capability of the system.Moreover,a discrete-time sliding mode control strategy based on Kalman filter method was designed,and Kalman filter was employed to eliminate the influence of system noise.Simulation results show that there is no chattering phenomenon in the output of controller and the state variables of controlled system,and the proposed algorithm is also feasible and has strong robustness to external disturbances.
文摘The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but it should not be used for estimating the state of a nonlinear system such as a satellite motion because it is difficult to obtain the desired estimation results.The linearized Kalman filtering approach and the extended Kalman filtering approach have been proposed for a general nonlinear system.The equations of satellite motion are described.The satellite motion states are estimated,and the relevant estimation errors are calculated through the estimation algorithms of the both above mentioned approaches implemented in Matlab are estimated.The performances of the extended Kalman filter and the linearized Kalman filter are compared.The simulation results show that the extended Kalman filter is much better than the linearized Kalman filter at the aspect of estimation effect.
基金Supported by the National Natural Science Foundation of China(20476007 20676013)
文摘On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA065003)the National Natural Science Foundation of China(No.21276011)the Ph.D.Programs Foundation of Ministry of Education of China(200800100001)
文摘Filtration is one of the most effective methods to remove suspended fine particles from air. In filtration processes,pressure drop of compact dust cake causes problems in efficiency and economy, which has received increasing attention and still remains challenging. In this study, we developed a novel technique to intensify the filtration of fine particles with efficient humidification. Two strategies for humidification, including ultrasonic atomization and steam humidification(controlling of ambient humidity), were employed and proved to be both effective. The regeneration frequency of the filter could be reduced by 55% with ultrasonic atomization, while steam humidification could lead to a 78% reduction in regeneration frequency. The effect of operating conditions on pressure drop and the mass loading during filtration were investigated. The dust cake showed a loose and porous structure with an optimized droplet-to-particle ratio. With the ratio of 1.53 and 0.0282, the maximum mass loading was 552 g·m-2upon the ultrasonic atomization and 720 g·m-2upon the steam humidification. The results show that humidification could slow down the increase of pressure drop during filtration and improve the efficiency of process.