Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the...Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the growth and activity of methane-producing bacteria(MPB)and poses serious problems of pollution, so FeCl3is used for H2S removal. The results show that the system performs well in the treatment process. COD removal generally increases with the increase in the organic loading rate(OLR), while the sulfate removal decreases slowly. As the OLR is higher than 7 kgCOD/(m3·d), both COD and sulfate removal tend to be stable. When the reactor is operated at the design load of 9 kgCOD/(m3·d), COD and sulfate removal remain about 79% and 91%, respectively. At the same time, the percentage of COD removed by SRB(CODSRB)also decreases from 8.9% to 4.0%. With FeCl3 addition, COD removal increases to 83%, while sulfate removal and CODSRBfurther decrease to 89% and 1.89%, respectively. According to the mass balance, nearly 82% of the sulfur is prevented from converting into H2S. Moreover, when the FeCl3 dosage is more than 1.6 g/L leachate, H2S can be removed totally from the biogas. Therefore, the application of FeCl3 for H2S removal in leachate treatment using the UASB reactor is very suitable and viable.展开更多
Experimental investigation of the microfiltration (MF) using a revolving cross-flow membrane filter was performed under the condition of constant pressure difference, and different flat membranes made of polyvinylid...Experimental investigation of the microfiltration (MF) using a revolving cross-flow membrane filter was performed under the condition of constant pressure difference, and different flat membranes made of polyvinylidene fluoride (PVDF, 0.1 μm), cellulose acetate (CA, 0.22 μm), sulfonated polyethersulfone (SPES, 0.22 μm) and polyamide (PA, 0.45 μm), respectively, were used in filtration experiments. The dependence of the filtrate mass of the cross-flow MF on time was measured on-line. The experimental results showed that the effect of the cross-flow on high viscosity medium was more significant than that on the low viscosity one.展开更多
The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite ...The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite accumulates obviously at different initial nitrate concentrations (64.9,54.8,49.3 and 29.5 mg·L^-1 ) and low temperatures, and the two break points on the oxidation-reduction potential (ORP) profile indicate the completion of nitrate and nitrite reduction. Usually, the nitrate reduction rate is used as the sole parameter to characterize the denitrification rate, and nitrite is not even measured. For accuracy, the total oxidized nitrogen (nitrate + nitrite) is used as a measure, though details characterizing the process may be overlooked. Additionally, batch tests are conducted to investigate the effects of C/N ratios and types of carbon sources on the nitrite accumulation during the denitrification. It is observed that carbon source is sufficient for the reduction of nitrate to nitrite, but for further reduction of nitrite to nitrogen gas, is deficient when C/N is below the theoretical critical level of 3.75 based on the stoichiometry of denitrification. Five carbon sources used in this work, except for glucose, may cause the nitrite accumulation. From experimental results and cited literature, it is concluded that Alcaligene species may be contained in the SBR activated-sludge system.展开更多
This study presents a biological system combined upflow anaerobic sludge bed(UASB) with sequencing batch reactor(SBR) to treat ammonium-rich landfill leachate.The start-up and operation of the nitritation at low tempe...This study presents a biological system combined upflow anaerobic sludge bed(UASB) with sequencing batch reactor(SBR) to treat ammonium-rich landfill leachate.The start-up and operation of the nitritation at low temperatures were investigated.The synergetic interaction of free ammonia(FA) inhibition on nitriteoxidizing bacteria(NOB) and process control was used to achieve nitritation in the SBR.It is demonstrated that nitritation was successfully started up in the SBR at low temperatures(14.0 ℃-18.2 ℃) by using FA inhibition coupled with process control,and then was maintained for 482 days at normal/low temperature.Although ammonia-oxidizing bacteria(AOB) and NOB co-existed within bacterial clusters in the SBR sludge,AOB were confirmed to be dominant nitrifying population species by scanning electron microscopic(SEM) observation and fluorescence in situ hybridization(FISH) analysis.This confirmation not only emphasized that cultivating the appropriate bacteria is essential for achieving stable nitritation performance,but it also revealed that NOB activity was strongly inhibited by FA rather than being eliminated altogether from the system.展开更多
The permafrost with the highest altitude and largest area in the mid and low latitude is located in the Qinghad-Tibet Plateau. As most frozen soils contain ice particles which are very sensitive to temperature and oth...The permafrost with the highest altitude and largest area in the mid and low latitude is located in the Qinghad-Tibet Plateau. As most frozen soils contain ice particles which are very sensitive to temperature and other external parameters, thus influencing the stability of the embankment in permafrost regions, it is very important to develop techniques to prevent damages to railway embankments due to thaw settlement. In this paper, the electrical capacitance sensors are designed to study the freezing front movement in a vessel and ice movement in water, which is the first step to apply the ECT system to the study of frozen soil. Two sensor arrangements are put into use. First, the traditional closed electrode sensors are put into use. In this arrangement, the electrodes are attached to the outside of the pipe or vessel, and the cross-sectional distribution of ice and water could be reconstructed from the capacitances measured. Also, the ice moving track at the cross section could be reflected thoroughly.Since the traditional closed electrode sensors can not meet the needs of measuring the ice freezing front move- ment, a new electrode sensors structure, that is, the unclosed electrode sensors are designed to satisfy the specific test of frozen soil. In this arrangement, several pairs of electrodes are arranged along the height of the vessel. A sudden decrease in the measured capacitance is observed when the freezing front advances past the electrodes.Therefore, according to the capacitance variation, the ice movement can be reflected. In summary, electrical capacitance tomography has the advantages of being non-intrusive. With different electrode sensor arrangement, ice movement and ice freezing front can be obtained. The electrical capacitance sensor system can be applied to investigate the complicated phenomena in frozen soil.展开更多
In the present study the membrane fouling in microfiltraiton used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and m...In the present study the membrane fouling in microfiltraiton used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study.Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.展开更多
文摘Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the growth and activity of methane-producing bacteria(MPB)and poses serious problems of pollution, so FeCl3is used for H2S removal. The results show that the system performs well in the treatment process. COD removal generally increases with the increase in the organic loading rate(OLR), while the sulfate removal decreases slowly. As the OLR is higher than 7 kgCOD/(m3·d), both COD and sulfate removal tend to be stable. When the reactor is operated at the design load of 9 kgCOD/(m3·d), COD and sulfate removal remain about 79% and 91%, respectively. At the same time, the percentage of COD removed by SRB(CODSRB)also decreases from 8.9% to 4.0%. With FeCl3 addition, COD removal increases to 83%, while sulfate removal and CODSRBfurther decrease to 89% and 1.89%, respectively. According to the mass balance, nearly 82% of the sulfur is prevented from converting into H2S. Moreover, when the FeCl3 dosage is more than 1.6 g/L leachate, H2S can be removed totally from the biogas. Therefore, the application of FeCl3 for H2S removal in leachate treatment using the UASB reactor is very suitable and viable.
基金Supported by the State Key Development Program for Basic Research of China(2003CB615705)
文摘Experimental investigation of the microfiltration (MF) using a revolving cross-flow membrane filter was performed under the condition of constant pressure difference, and different flat membranes made of polyvinylidene fluoride (PVDF, 0.1 μm), cellulose acetate (CA, 0.22 μm), sulfonated polyethersulfone (SPES, 0.22 μm) and polyamide (PA, 0.45 μm), respectively, were used in filtration experiments. The dependence of the filtrate mass of the cross-flow MF on time was measured on-line. The experimental results showed that the effect of the cross-flow on high viscosity medium was more significant than that on the low viscosity one.
基金Supported by the National Natural Science Foundation of China (50978003), the Natural Science Foundation of Beijing (8091001), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR 20090502), and the State Key Laboratory of Urban Water Resource and Environment (HIT) (QAK200802).
文摘The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite accumulates obviously at different initial nitrate concentrations (64.9,54.8,49.3 and 29.5 mg·L^-1 ) and low temperatures, and the two break points on the oxidation-reduction potential (ORP) profile indicate the completion of nitrate and nitrite reduction. Usually, the nitrate reduction rate is used as the sole parameter to characterize the denitrification rate, and nitrite is not even measured. For accuracy, the total oxidized nitrogen (nitrate + nitrite) is used as a measure, though details characterizing the process may be overlooked. Additionally, batch tests are conducted to investigate the effects of C/N ratios and types of carbon sources on the nitrite accumulation during the denitrification. It is observed that carbon source is sufficient for the reduction of nitrate to nitrite, but for further reduction of nitrite to nitrogen gas, is deficient when C/N is below the theoretical critical level of 3.75 based on the stoichiometry of denitrification. Five carbon sources used in this work, except for glucose, may cause the nitrite accumulation. From experimental results and cited literature, it is concluded that Alcaligene species may be contained in the SBR activated-sludge system.
基金Supported by the National Natural Science Foundation of China(51168028,51168027)the Science and Technique Foundation Project for Youth of Gansu Province(1107RJYA279)(No.145RJZA093)
文摘This study presents a biological system combined upflow anaerobic sludge bed(UASB) with sequencing batch reactor(SBR) to treat ammonium-rich landfill leachate.The start-up and operation of the nitritation at low temperatures were investigated.The synergetic interaction of free ammonia(FA) inhibition on nitriteoxidizing bacteria(NOB) and process control was used to achieve nitritation in the SBR.It is demonstrated that nitritation was successfully started up in the SBR at low temperatures(14.0 ℃-18.2 ℃) by using FA inhibition coupled with process control,and then was maintained for 482 days at normal/low temperature.Although ammonia-oxidizing bacteria(AOB) and NOB co-existed within bacterial clusters in the SBR sludge,AOB were confirmed to be dominant nitrifying population species by scanning electron microscopic(SEM) observation and fluorescence in situ hybridization(FISH) analysis.This confirmation not only emphasized that cultivating the appropriate bacteria is essential for achieving stable nitritation performance,but it also revealed that NOB activity was strongly inhibited by FA rather than being eliminated altogether from the system.
基金supported by a grant of the Knowledge Innovation Program of the Chinese Academy of Sciences (grant no. KZCX1-SW-04)the National Natural Science Fund (grant no. 40501017).
文摘The permafrost with the highest altitude and largest area in the mid and low latitude is located in the Qinghad-Tibet Plateau. As most frozen soils contain ice particles which are very sensitive to temperature and other external parameters, thus influencing the stability of the embankment in permafrost regions, it is very important to develop techniques to prevent damages to railway embankments due to thaw settlement. In this paper, the electrical capacitance sensors are designed to study the freezing front movement in a vessel and ice movement in water, which is the first step to apply the ECT system to the study of frozen soil. Two sensor arrangements are put into use. First, the traditional closed electrode sensors are put into use. In this arrangement, the electrodes are attached to the outside of the pipe or vessel, and the cross-sectional distribution of ice and water could be reconstructed from the capacitances measured. Also, the ice moving track at the cross section could be reflected thoroughly.Since the traditional closed electrode sensors can not meet the needs of measuring the ice freezing front move- ment, a new electrode sensors structure, that is, the unclosed electrode sensors are designed to satisfy the specific test of frozen soil. In this arrangement, several pairs of electrodes are arranged along the height of the vessel. A sudden decrease in the measured capacitance is observed when the freezing front advances past the electrodes.Therefore, according to the capacitance variation, the ice movement can be reflected. In summary, electrical capacitance tomography has the advantages of being non-intrusive. With different electrode sensor arrangement, ice movement and ice freezing front can be obtained. The electrical capacitance sensor system can be applied to investigate the complicated phenomena in frozen soil.
文摘In the present study the membrane fouling in microfiltraiton used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study.Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.