In this paper, fouling mechanisms of mullite ceramic membranes for treatment of oily wastewaters in hybrid coagulation-microfiltration (MF) process presented. Hermia's models for cross flow filtration were used to ...In this paper, fouling mechanisms of mullite ceramic membranes for treatment of oily wastewaters in hybrid coagulation-microfiltration (MF) process presented. Hermia's models for cross flow filtration were used to investigate the fouling mechanisms of membranes with various coagulating chemicals concentrations. Four coagu lating chemicals (FeC12.4H20, FeSO4.7H20, A1C13-6H20 and A12(SO4)3.18H20) plus Ca(OH)2 of the same concen- tration were evaluated in the coagulation-MF hybrid process with different concentrations (0, 50 mg.L-1, 100 mg.L-1 and 200 mg.L-1). To determine whether the data agree with models under consideration, the coefficients of determination (R2) of all models were compared with one another. In addition, average prediction errors of models were calculated. The results showed that cake filtration model can be applied for prediction of permeation flux decline for MF and coagulation-(MF) hybrid process with the best average error equal to 0.09%. Results indicated that pore blocking behavior changes as time of filtration increases, and one model cannot predict pore blocking behavior in all filtration time with very good precision.展开更多
Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane system...Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane systems were employed as pre-treatment for seawater desalination. A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux. Then a pilot test was performed to investigate the long-term performance. The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only, but the effect is distinct when the cross-flow velocity varies in the transition region. The membrane fouling is slight at the permeate flux of 150 L·m^-2·h^-1 and the system is stable, producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0, respectively) for RO to run for 2922.4 h without chemical cleaning. Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.展开更多
The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre me...The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity.展开更多
Changes in the regulatory requirements and the forthcoming Disinfectant/Disinfection By-Products (D/DBP) Rule will require that drinking water treatment facilities be operated to achieve maximum removals of particle...Changes in the regulatory requirements and the forthcoming Disinfectant/Disinfection By-Products (D/DBP) Rule will require that drinking water treatment facilities be operated to achieve maximum removals of particles and disinfectant tolerant microorganisms as well as natural organic matter (NOM). For drinking water production, the use of membrane filtration processes such as microfiltration and ultrafiltration (MF/UF) alone to satisfy the turbidity, particle and microorganism removal a requirement of the surface water treatment regulation (SWTR) is not enough. MF/UF treatment processes can achieve only nominal (10 percent) removal of disinfection by-products (DBP) precursors (James, et al., 1995). On the other hand, too fast fouling can make the filtration processes more difficult to carry on. To solve these problems, many authors have been interested in installing coagulation pretreatment before membrane filtration to improve membrane performance. However, previous studies reported conflicting results. Some supported the effectiveness of coagulation pretreatment, while others contended that coagulation aggravated membrane performance. This research aims to identify the effects of coagulation pretreatment on membrane filtration through a pilot study using PVDF membrane in combination with analyzing the rationale of coagulation. Another objective of this research was to evaluate the different impacts on membrane performance of using different membrane modules (the submerged module and pressured module). The results showed that coagulation pretreatment greatly improved the membrane performance, extending the filtration time as well as reducing the permeated organic level, and that the submerged module is much more efficient than the pressured module.展开更多
Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose ...Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose of this study was to determine the effect of membrane characteristics, feed solution pH, operating pressure of "Dead-end" membrane reactor, and the frequency of membranes which uses on the percentage of COD reduction in "batik" wastewater. In this study, the filtrate from wastewater pre-treatment with Fenton oxidation, both without and with addition of activated carbon, is passed to the ultrafiltration (UF) separation system. Fenton oxidation process was carried out at optimum conditions, i.e. at pH 3, temperature 50 ℃, and the addition FeSO4·7H2O and H2O2 at 747-830 mg/L and 1,168-1,460 mg/L, respectively. The optimum reduction percentage of COD can be achieved when the membranes used for separation has a pore size of 0.01 to 0.015 lam, feed solution pH 2, operating pressure 1 atm and frequency of membranes uses I x. To determine the fouling potential on ultrafiltration membranes that are used, flux measurements were performed 3 times for each membrane. These stages can see that the flux decline reached 22.5% when the effluent filtered directly to the membrane; 17.3% when performed pre-treatment prior to separation processes using membranes and 10% when combined pre-treatment process, use of activated carbon and the separation using ultrafiltration membranes.展开更多
Bali Tourism Development Corporation's lagoon (BTDC lagoon) has been used for treating wastewaters that come from all facilities available in the Nusa Dua Resort tourist area. Reuse of the lagoon effluent is limite...Bali Tourism Development Corporation's lagoon (BTDC lagoon) has been used for treating wastewaters that come from all facilities available in the Nusa Dua Resort tourist area. Reuse of the lagoon effluent is limited for some applications due to salt and suspended solid contents. Application of an integrated membrane system for improving the water quality of the lagoon effluent which is suitable for various uses is under consideration. In this work an ultraflltration (UF) pilot performance for possible pretreatment of Reverse Osmosis (RO) was investigated. The results showed that permeate quality was stable (less than 0.5 NTU), regardless of concentrating and diluting retentate in each cycle and fouling for a long duration of operation. However, the water quality obtained with this membrane was not enough to be directly used. The permeate quality obtained from the UF system fulfils the requirement for the optimal operation of reverse osmosis. Moreover, appropriate intermittent-backwash operation was fairly effective to maintain the fluxes at a reasonable level.展开更多
文摘In this paper, fouling mechanisms of mullite ceramic membranes for treatment of oily wastewaters in hybrid coagulation-microfiltration (MF) process presented. Hermia's models for cross flow filtration were used to investigate the fouling mechanisms of membranes with various coagulating chemicals concentrations. Four coagu lating chemicals (FeC12.4H20, FeSO4.7H20, A1C13-6H20 and A12(SO4)3.18H20) plus Ca(OH)2 of the same concen- tration were evaluated in the coagulation-MF hybrid process with different concentrations (0, 50 mg.L-1, 100 mg.L-1 and 200 mg.L-1). To determine whether the data agree with models under consideration, the coefficients of determination (R2) of all models were compared with one another. In addition, average prediction errors of models were calculated. The results showed that cake filtration model can be applied for prediction of permeation flux decline for MF and coagulation-(MF) hybrid process with the best average error equal to 0.09%. Results indicated that pore blocking behavior changes as time of filtration increases, and one model cannot predict pore blocking behavior in all filtration time with very good precision.
基金Supported by the National High Technology Research and Development of China (2007AA030303)
文摘Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane systems were employed as pre-treatment for seawater desalination. A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux. Then a pilot test was performed to investigate the long-term performance. The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only, but the effect is distinct when the cross-flow velocity varies in the transition region. The membrane fouling is slight at the permeate flux of 150 L·m^-2·h^-1 and the system is stable, producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0, respectively) for RO to run for 2922.4 h without chemical cleaning. Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.
文摘The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity.
文摘Changes in the regulatory requirements and the forthcoming Disinfectant/Disinfection By-Products (D/DBP) Rule will require that drinking water treatment facilities be operated to achieve maximum removals of particles and disinfectant tolerant microorganisms as well as natural organic matter (NOM). For drinking water production, the use of membrane filtration processes such as microfiltration and ultrafiltration (MF/UF) alone to satisfy the turbidity, particle and microorganism removal a requirement of the surface water treatment regulation (SWTR) is not enough. MF/UF treatment processes can achieve only nominal (10 percent) removal of disinfection by-products (DBP) precursors (James, et al., 1995). On the other hand, too fast fouling can make the filtration processes more difficult to carry on. To solve these problems, many authors have been interested in installing coagulation pretreatment before membrane filtration to improve membrane performance. However, previous studies reported conflicting results. Some supported the effectiveness of coagulation pretreatment, while others contended that coagulation aggravated membrane performance. This research aims to identify the effects of coagulation pretreatment on membrane filtration through a pilot study using PVDF membrane in combination with analyzing the rationale of coagulation. Another objective of this research was to evaluate the different impacts on membrane performance of using different membrane modules (the submerged module and pressured module). The results showed that coagulation pretreatment greatly improved the membrane performance, extending the filtration time as well as reducing the permeated organic level, and that the submerged module is much more efficient than the pressured module.
文摘Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose of this study was to determine the effect of membrane characteristics, feed solution pH, operating pressure of "Dead-end" membrane reactor, and the frequency of membranes which uses on the percentage of COD reduction in "batik" wastewater. In this study, the filtrate from wastewater pre-treatment with Fenton oxidation, both without and with addition of activated carbon, is passed to the ultrafiltration (UF) separation system. Fenton oxidation process was carried out at optimum conditions, i.e. at pH 3, temperature 50 ℃, and the addition FeSO4·7H2O and H2O2 at 747-830 mg/L and 1,168-1,460 mg/L, respectively. The optimum reduction percentage of COD can be achieved when the membranes used for separation has a pore size of 0.01 to 0.015 lam, feed solution pH 2, operating pressure 1 atm and frequency of membranes uses I x. To determine the fouling potential on ultrafiltration membranes that are used, flux measurements were performed 3 times for each membrane. These stages can see that the flux decline reached 22.5% when the effluent filtered directly to the membrane; 17.3% when performed pre-treatment prior to separation processes using membranes and 10% when combined pre-treatment process, use of activated carbon and the separation using ultrafiltration membranes.
文摘Bali Tourism Development Corporation's lagoon (BTDC lagoon) has been used for treating wastewaters that come from all facilities available in the Nusa Dua Resort tourist area. Reuse of the lagoon effluent is limited for some applications due to salt and suspended solid contents. Application of an integrated membrane system for improving the water quality of the lagoon effluent which is suitable for various uses is under consideration. In this work an ultraflltration (UF) pilot performance for possible pretreatment of Reverse Osmosis (RO) was investigated. The results showed that permeate quality was stable (less than 0.5 NTU), regardless of concentrating and diluting retentate in each cycle and fouling for a long duration of operation. However, the water quality obtained with this membrane was not enough to be directly used. The permeate quality obtained from the UF system fulfils the requirement for the optimal operation of reverse osmosis. Moreover, appropriate intermittent-backwash operation was fairly effective to maintain the fluxes at a reasonable level.