This study aimed to gain more high-quality rice with less water and im- prove the level of national food security. Based on the optimized planting density of rice with drip irrigation, direct sowing technology for pla...This study aimed to gain more high-quality rice with less water and im- prove the level of national food security. Based on the optimized planting density of rice with drip irrigation, direct sowing technology for plastic-film-covered rice cultiva- tion with drip irrigation was proposed. Furthermore, sowing planter for plastic-film- covered drip-irrigation rice cultivation was developed in accordance with the require- ments for the combination of agricultural technique and agricultural machinery. Ac- cording to the large-scale field production evaluation, the film-punching direct-sowing technology for dry cultivation of rice can greatly reduce the labor consumption and results in neat emergence of seedlings. Productive practice shows that using the developed sowing planter for plastic-film-covered rice cultivation with drip irrigation leads to vacancy rate ≤3%, pass rate of grain number ≥85%, soil-covering rate ≥ 95%, and hole number per acre of 31 000-33 000. In addition, the sowing planter can adapt to the agronomic technical requirements for high-density cultivation of rice and provide technical support for the rice production in arid regions of China. Key words Fargesia murielae; Nutrition mechanism; Age grade; Nutrient distribution展开更多
[Objective] This paper discussed the influences of surface drip irrigation on the growth, yield and quality of several new species of Guitang, in order to provide references for the promotion of new species and high-y...[Objective] This paper discussed the influences of surface drip irrigation on the growth, yield and quality of several new species of Guitang, in order to provide references for the promotion of new species and high-yield cultivation. [Method] One species is planted in each region, and there were two controls dripping technology or no-dripping technology in each region. [Results] The average yield of dripping-pro- cessed land was 115.91 t/hm2, which was 19.73 t/hm2 higher than the control. The maximum output was GT31, followed by GT34. The output of all Guitang new species was higher than the control ROC22. The average sucrose of dripped sug- arcane was 14.68%, which was 0.19% less than the control of 14.83%. The drip- ping technology was economically beneficial, rising by 15.2% compared with the control. The highest dripping efficiency was GT31, while the lowest one was ROC22. The increasing ratios of drip irrigation efficiency of the tested new Guitang species were higher than ROC22. [Conclusions] Under the drip irrigation condition, the sugarcane yield was extremely higher than the control of non-dripping irrigation, and the economic efficiency was significant. However, the sugar in the sugarcane declined slightly. The sensitivity of several new Guitang species to water was higher than the control ROC22.展开更多
Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the res...Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.展开更多
The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production...The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production of food and cash crops. The objective of this paper was to evaluate the effects of surface and subsurface drip irrigation (SDI) at 5, 20 and 35 cm depths on water's dynamic in soil (Soil moisture distribution, water's stock in soil and irrigation water use efficiency) to produce maize in semiarid climates. Field study was conducted at the Higher Institute of Agronomy of Chott Meriem, Tunisia. The results indicated that soil moisture content under subsurface drip irrigation at 35 cm (T3) depth was more uniform compared to 5 cm (T1) and 20 cm (T2). Moreover, irrigation water use efficiency was higher in this treatment. Indeed, it increased about 18%, 14% and 7% for T3, T2 and T1, respectively when compared with surface drip irrigation. The results of the present study showed that SDI allows uniform soil moisture, minimize the evaporative loss and delivery water directly to the plant root zone and consequently increases use efficiency. Further research is needed in order to determine whether corn production with SDI is feasible in the arid region.展开更多
[Objective] This study aimed to investigate the appearance of major agronomic traits and yield potential of Huayu series of peanut cultivars under the condition of mulched drip irrigation, so as to provide core parent...[Objective] This study aimed to investigate the appearance of major agronomic traits and yield potential of Huayu series of peanut cultivars under the condition of mulched drip irrigation, so as to provide core parent materials for new peanut cultivar breeding in Xinjiang during Thirteenth Five-Year Plan. [Method] A total of 16 peanut cultivars of Huayu series were studied systematically by field experiment and laboratory analysis. In addition, the main stem height, lateral branch length, pod number per plant, 100-pod weight, 100-kernel weight, pod length, pod width and yield of different peanut cultivar were compared. [Result]Under the condition of mulched drip irrigation, the appearance of major agronomic traits of peanut cultivars in Xinjiang was better than that in Shandong areas. In Xinjiang, the yields of the peanut cultivars were increased in varying degrees. However,there were some differences in appearance of major agronomic traits, as well as yield, among different peanut cultivars. Among all the peanut cultivars, the single-plant productivities of Huayu 22, Huayu 28 and Huayu 50 were higher than those of the other cultivars, and the yields of Huayu 33 and Huayu 50 were higher than those of the other cultivars. Meanwhile, the late two cultivars' comprehensive traits were excellent. [Conclusion] In the high-yielding breeding of peanut in Xinjiang, Huayu 33 and Huayu50 can be used as core parent materials. Under the condition of mulched drip irrigation, their yield potential can be further explored.展开更多
In a three-year study, the response of four cultivars of chickpea, Bulgarit, WIR-32, Jordan and ICC 11293 to irrigation with TW (treated wastewater) and FW (freshwater), using surface and subsurface drip irrigatio...In a three-year study, the response of four cultivars of chickpea, Bulgarit, WIR-32, Jordan and ICC 11293 to irrigation with TW (treated wastewater) and FW (freshwater), using surface and subsurface drip irrigation was investigated. Wastewater generated from Al-Quds university campus included black, grey and storm water was treated by small scale pilot plant. The wastewater pilot plant consists of tailored made secondary biological activated sludge process with daily capacity of 50 m3. The influent and effluent chemical and biological quality parameters were routinely monitored and analyzed. The data reveal that the average values for BOD, COD and EC for the effluent are 50 ppm, 136 ppm and 1.4 mS/cm over 2 years period. The results of chickpea growth parameters and the chemical and biological analysis of the seeds and leaves indicate that the cultivars Bulgarit and ICC 11293 can be irrigated with TW without any loss in yield and quality. Factor analysis reasonably favored Bulgarit Cultivar irrigated with treated effluent over other cultivars. WIR-32 and Jordan cultivars showed significant reduction in their growth parameters when irrigated with TW as compared with FW. Surface and subsurface drip irrigation gave similar results in most cases. Soil analysis in this study showed no significant difference between irrigation with TW and FW.展开更多
Soil particle size distribution(PSD),one of the most important soil physical attributes,is of great importance to soil water movement,soil erosion and soil solute migration.In this study,the soil PSD of 563 soil sampl...Soil particle size distribution(PSD),one of the most important soil physical attributes,is of great importance to soil water movement,soil erosion and soil solute migration.In this study,the soil PSD of 563 soil samples from the mulched drip irrigated cotton fields in Xinjiang of China were measured by laser diffraction particle size analyzer.The soil PSD characteristics and its relations with soil water and salt were studied by using the combined methods of textural triangle,fractal and multifractal analysis.The results showed very low clay content(about 1.52%) while really high sand content of the studied soil,and a complex shape of bimodal or unimodal of soil PSD.The results also showed that the two indices,i.e.,standard deviation and the peak value of soil particle relative volumes,were good indicators of soil PSD and thus had good relations with fractal and multifractal characteristics.The correlative analysis further indicated that the mulched drip irrigation had a significant impact on the distribution of the soil salt,while this impact withered for the deeper soil layer.The soil texture feature was found to dominate soil water and salt distribution,especially the surface soil salt content and the deep soil water content.展开更多
文摘This study aimed to gain more high-quality rice with less water and im- prove the level of national food security. Based on the optimized planting density of rice with drip irrigation, direct sowing technology for plastic-film-covered rice cultiva- tion with drip irrigation was proposed. Furthermore, sowing planter for plastic-film- covered drip-irrigation rice cultivation was developed in accordance with the require- ments for the combination of agricultural technique and agricultural machinery. Ac- cording to the large-scale field production evaluation, the film-punching direct-sowing technology for dry cultivation of rice can greatly reduce the labor consumption and results in neat emergence of seedlings. Productive practice shows that using the developed sowing planter for plastic-film-covered rice cultivation with drip irrigation leads to vacancy rate ≤3%, pass rate of grain number ≥85%, soil-covering rate ≥ 95%, and hole number per acre of 31 000-33 000. In addition, the sowing planter can adapt to the agronomic technical requirements for high-density cultivation of rice and provide technical support for the rice production in arid regions of China. Key words Fargesia murielae; Nutrition mechanism; Age grade; Nutrient distribution
基金Supported by National Sugarcane Industrial Technology System Guangxi Innovation Team Program(nycytxgx-cxtd-02)Guangxi Scientific Research and Technological Development Program(No.12118002-1)Basic Scientific and Research Program of Guangxi Agricultural Sciences(No.2012YZ23)~~
文摘[Objective] This paper discussed the influences of surface drip irrigation on the growth, yield and quality of several new species of Guitang, in order to provide references for the promotion of new species and high-yield cultivation. [Method] One species is planted in each region, and there were two controls dripping technology or no-dripping technology in each region. [Results] The average yield of dripping-pro- cessed land was 115.91 t/hm2, which was 19.73 t/hm2 higher than the control. The maximum output was GT31, followed by GT34. The output of all Guitang new species was higher than the control ROC22. The average sucrose of dripped sug- arcane was 14.68%, which was 0.19% less than the control of 14.83%. The drip- ping technology was economically beneficial, rising by 15.2% compared with the control. The highest dripping efficiency was GT31, while the lowest one was ROC22. The increasing ratios of drip irrigation efficiency of the tested new Guitang species were higher than ROC22. [Conclusions] Under the drip irrigation condition, the sugarcane yield was extremely higher than the control of non-dripping irrigation, and the economic efficiency was significant. However, the sugar in the sugarcane declined slightly. The sensitivity of several new Guitang species to water was higher than the control ROC22.
基金Project supported by the Chinese Academy of Sciences (CAS) (No. KZCX-SW-416-02), and the K. C. Wong Post Doctoral Research Award Fund of CAS (No. 29, 2002).
文摘Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.
文摘The sustainability of agricultural production depends on conservation and appropriate use and management of scarce water resources especially in arid and semi-arid areas where irrigation is required for the production of food and cash crops. The objective of this paper was to evaluate the effects of surface and subsurface drip irrigation (SDI) at 5, 20 and 35 cm depths on water's dynamic in soil (Soil moisture distribution, water's stock in soil and irrigation water use efficiency) to produce maize in semiarid climates. Field study was conducted at the Higher Institute of Agronomy of Chott Meriem, Tunisia. The results indicated that soil moisture content under subsurface drip irrigation at 35 cm (T3) depth was more uniform compared to 5 cm (T1) and 20 cm (T2). Moreover, irrigation water use efficiency was higher in this treatment. Indeed, it increased about 18%, 14% and 7% for T3, T2 and T1, respectively when compared with surface drip irrigation. The results of the present study showed that SDI allows uniform soil moisture, minimize the evaporative loss and delivery water directly to the plant root zone and consequently increases use efficiency. Further research is needed in order to determine whether corn production with SDI is feasible in the arid region.
基金Supported by Shihezi Agricultural Key Science and Technology Program of Eighth Division of Xinjiang Production and Construction Corps(2013NY11)Scientific and Technological Supporting Plan of Xinjiang Production and Construction Corps for Xinjiang(2014AB018)
文摘[Objective] This study aimed to investigate the appearance of major agronomic traits and yield potential of Huayu series of peanut cultivars under the condition of mulched drip irrigation, so as to provide core parent materials for new peanut cultivar breeding in Xinjiang during Thirteenth Five-Year Plan. [Method] A total of 16 peanut cultivars of Huayu series were studied systematically by field experiment and laboratory analysis. In addition, the main stem height, lateral branch length, pod number per plant, 100-pod weight, 100-kernel weight, pod length, pod width and yield of different peanut cultivar were compared. [Result]Under the condition of mulched drip irrigation, the appearance of major agronomic traits of peanut cultivars in Xinjiang was better than that in Shandong areas. In Xinjiang, the yields of the peanut cultivars were increased in varying degrees. However,there were some differences in appearance of major agronomic traits, as well as yield, among different peanut cultivars. Among all the peanut cultivars, the single-plant productivities of Huayu 22, Huayu 28 and Huayu 50 were higher than those of the other cultivars, and the yields of Huayu 33 and Huayu 50 were higher than those of the other cultivars. Meanwhile, the late two cultivars' comprehensive traits were excellent. [Conclusion] In the high-yielding breeding of peanut in Xinjiang, Huayu 33 and Huayu50 can be used as core parent materials. Under the condition of mulched drip irrigation, their yield potential can be further explored.
文摘In a three-year study, the response of four cultivars of chickpea, Bulgarit, WIR-32, Jordan and ICC 11293 to irrigation with TW (treated wastewater) and FW (freshwater), using surface and subsurface drip irrigation was investigated. Wastewater generated from Al-Quds university campus included black, grey and storm water was treated by small scale pilot plant. The wastewater pilot plant consists of tailored made secondary biological activated sludge process with daily capacity of 50 m3. The influent and effluent chemical and biological quality parameters were routinely monitored and analyzed. The data reveal that the average values for BOD, COD and EC for the effluent are 50 ppm, 136 ppm and 1.4 mS/cm over 2 years period. The results of chickpea growth parameters and the chemical and biological analysis of the seeds and leaves indicate that the cultivars Bulgarit and ICC 11293 can be irrigated with TW without any loss in yield and quality. Factor analysis reasonably favored Bulgarit Cultivar irrigated with treated effluent over other cultivars. WIR-32 and Jordan cultivars showed significant reduction in their growth parameters when irrigated with TW as compared with FW. Surface and subsurface drip irrigation gave similar results in most cases. Soil analysis in this study showed no significant difference between irrigation with TW and FW.
基金supported by the National Key Technology R & D Program of China (Grant No 2007BAD38B01)the National Science Founda-tion for Post-doctoral Scientists of China (Grant No 20100470297)
文摘Soil particle size distribution(PSD),one of the most important soil physical attributes,is of great importance to soil water movement,soil erosion and soil solute migration.In this study,the soil PSD of 563 soil samples from the mulched drip irrigated cotton fields in Xinjiang of China were measured by laser diffraction particle size analyzer.The soil PSD characteristics and its relations with soil water and salt were studied by using the combined methods of textural triangle,fractal and multifractal analysis.The results showed very low clay content(about 1.52%) while really high sand content of the studied soil,and a complex shape of bimodal or unimodal of soil PSD.The results also showed that the two indices,i.e.,standard deviation and the peak value of soil particle relative volumes,were good indicators of soil PSD and thus had good relations with fractal and multifractal characteristics.The correlative analysis further indicated that the mulched drip irrigation had a significant impact on the distribution of the soil salt,while this impact withered for the deeper soil layer.The soil texture feature was found to dominate soil water and salt distribution,especially the surface soil salt content and the deep soil water content.