针对无人机跟踪过程中目标遮挡和目标背景变化等因素导致的跟踪失败现象,提出一种M TF(M ean-shift by TWH and FB-error)跟踪算法。首先,在M ean-shift跟踪框架下引入目标加权直方图(TWH:Target-Weighted Histogram)描述目标,即在跟踪...针对无人机跟踪过程中目标遮挡和目标背景变化等因素导致的跟踪失败现象,提出一种M TF(M ean-shift by TWH and FB-error)跟踪算法。首先,在M ean-shift跟踪框架下引入目标加权直方图(TWH:Target-Weighted Histogram)描述目标,即在跟踪过程中,用目标的局部背景来削弱所有区域的内部背景特征,使目标特征突出;其次,添加FB-error约束,在目标被部分遮挡时,通过使用FB-error相关加权函数把目标当前位置的预测结果与Mean-shift矢量计算出的位置结果联合起来估计目标在t时刻的最终位置。实验表明,此跟踪算法在跟踪精度上有较大突破。展开更多
根区水质量模型(Root Zone Water Quality Model,RZWQM)被广泛应用于刻画土壤水文循环过程对作物生长的影响,并通过模型率定模拟指导农业生产管理。然而RZWQM模型的一次率定需要较长时间,在可接受时间范围内找到一组合适的模型参数是一...根区水质量模型(Root Zone Water Quality Model,RZWQM)被广泛应用于刻画土壤水文循环过程对作物生长的影响,并通过模型率定模拟指导农业生产管理。然而RZWQM模型的一次率定需要较长时间,在可接受时间范围内找到一组合适的模型参数是一件较困难的工作;同时传统的模型参数试错法依赖于使用者的专业知识和经验,也需要多次尝试才能达到较满意的模拟效果。提出使用稀疏网格方法建立RZWQM模型的近似替代模型,并使用随机漂移粒子群优化算法对替代模型进行自动参数优化,将优化后的参数用于RZWQM模型的实际应用模拟。替代模型近似精度高,率定速度快,大大节省了模型参数优化的计算开销。最后将提出的稀疏网格近似替代模型方法结合随机漂移粒子群优化算法使用美国爱荷华州5年玉米-大豆间中的作物产量、排水流量、NO-3-N流失量田间实测数据进行了验证分析。结果显示该方法能够极大地提高模型参数优化效率和节省人力;同时,通过模型性能评价指标PBIAS、NSE和RSR的数值比较也表明该方法优化后的RZWQM模型性能要好于传统试错法的模型性能。展开更多
多示例多标记学习在多语义对象处理中克服了多示例学习和多标记学习的缺点,成功应用于文本分类、图像识别标注、基因数据分析等任务中.其中基于退化策略的多示例多标记学习算法,多利用K-Medoids聚类将多示例多标记退化成单示例多标记,...多示例多标记学习在多语义对象处理中克服了多示例学习和多标记学习的缺点,成功应用于文本分类、图像识别标注、基因数据分析等任务中.其中基于退化策略的多示例多标记学习算法,多利用K-Medoids聚类将多示例多标记退化成单示例多标记,但此种退化方式过于简化多语义和复杂语义的对象,并未考虑示例间的相关性,导致退化过程中的信息削弱甚至丢失.针对这一问题,提出了结合均值漂移的多示例多标记学习改进算法(MultiInstance Multi-Label with Mean Shift,MIMLMS),将高斯核函数和权值加入均值漂移中.权值的加入保证了示例之间的相关性得以保留,而将多示例集合加入高斯核函数就可利用核密度估计和梯度下降法求解退化过程最优解,最终以误差平方和为分类目标函数,建立多示例多标记分类模型.算法在基准的多示例多标记测试数据集中的实验结果,验证了算法的良好分类效果及算法的有效性和可靠性.展开更多
文摘针对无人机跟踪过程中目标遮挡和目标背景变化等因素导致的跟踪失败现象,提出一种M TF(M ean-shift by TWH and FB-error)跟踪算法。首先,在M ean-shift跟踪框架下引入目标加权直方图(TWH:Target-Weighted Histogram)描述目标,即在跟踪过程中,用目标的局部背景来削弱所有区域的内部背景特征,使目标特征突出;其次,添加FB-error约束,在目标被部分遮挡时,通过使用FB-error相关加权函数把目标当前位置的预测结果与Mean-shift矢量计算出的位置结果联合起来估计目标在t时刻的最终位置。实验表明,此跟踪算法在跟踪精度上有较大突破。
文摘根区水质量模型(Root Zone Water Quality Model,RZWQM)被广泛应用于刻画土壤水文循环过程对作物生长的影响,并通过模型率定模拟指导农业生产管理。然而RZWQM模型的一次率定需要较长时间,在可接受时间范围内找到一组合适的模型参数是一件较困难的工作;同时传统的模型参数试错法依赖于使用者的专业知识和经验,也需要多次尝试才能达到较满意的模拟效果。提出使用稀疏网格方法建立RZWQM模型的近似替代模型,并使用随机漂移粒子群优化算法对替代模型进行自动参数优化,将优化后的参数用于RZWQM模型的实际应用模拟。替代模型近似精度高,率定速度快,大大节省了模型参数优化的计算开销。最后将提出的稀疏网格近似替代模型方法结合随机漂移粒子群优化算法使用美国爱荷华州5年玉米-大豆间中的作物产量、排水流量、NO-3-N流失量田间实测数据进行了验证分析。结果显示该方法能够极大地提高模型参数优化效率和节省人力;同时,通过模型性能评价指标PBIAS、NSE和RSR的数值比较也表明该方法优化后的RZWQM模型性能要好于传统试错法的模型性能。
文摘多示例多标记学习在多语义对象处理中克服了多示例学习和多标记学习的缺点,成功应用于文本分类、图像识别标注、基因数据分析等任务中.其中基于退化策略的多示例多标记学习算法,多利用K-Medoids聚类将多示例多标记退化成单示例多标记,但此种退化方式过于简化多语义和复杂语义的对象,并未考虑示例间的相关性,导致退化过程中的信息削弱甚至丢失.针对这一问题,提出了结合均值漂移的多示例多标记学习改进算法(MultiInstance Multi-Label with Mean Shift,MIMLMS),将高斯核函数和权值加入均值漂移中.权值的加入保证了示例之间的相关性得以保留,而将多示例集合加入高斯核函数就可利用核密度估计和梯度下降法求解退化过程最优解,最终以误差平方和为分类目标函数,建立多示例多标记分类模型.算法在基准的多示例多标记测试数据集中的实验结果,验证了算法的良好分类效果及算法的有效性和可靠性.