期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
管道缺陷漏磁检测的三维有限元仿真分析 被引量:11
1
作者 郑彪华 何文 +2 位作者 周松强 张春雷 高忠 《中国安全科学学报》 CAS CSCD 北大核心 2013年第12期35-41,共7页
为研究运输管道缺陷的漏磁(MFL)信号特征,采用ANSYS软件进行管道缺陷漏磁检测的三维有限元数值仿真。首先建立漏磁检测分析装置的数值模型,进行三维静态情况的数值计算,获得不同缺陷所产生的漏磁信号,然后将这些数据与试验结果进... 为研究运输管道缺陷的漏磁(MFL)信号特征,采用ANSYS软件进行管道缺陷漏磁检测的三维有限元数值仿真。首先建立漏磁检测分析装置的数值模型,进行三维静态情况的数值计算,获得不同缺陷所产生的漏磁信号,然后将这些数据与试验结果进行比较分析。在此基础上,分析缺陷深度、缺陷直径以及传感器提离值对漏磁信号参数的影响。结果表明:磁通密度轴向分量By的幅值能够用于衡量缺陷的深度,可依据By的宽度和磁通密度径向分量Bx的峰峰间距来定量识别缺陷直径;传感器的提离值对缺陷漏磁场的影响很大,为使测得的漏磁信号可靠并能测得深度较小的缺陷,传感器的提离值应设定为1.5~3mm。 展开更多
关键词 管道 缺陷 (mfl)检测 有限元分析 ANSYS 通密度 提离值
下载PDF
Wavelet domain adaptive filtering algorithm for removing the seamless pipe noise contained in the magnetic flux leakage data 被引量:1
2
作者 韩文花 Que Peiwen 《High Technology Letters》 EI CAS 2006年第2期170-174,共5页
With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has establishe... With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has established itself as the most widely used in-line inspection technique for the evaluation of gas and oil pipelines. The MFL data obtained from seamless pipeline inspection is usually contaminated by the seamless pipe noise (SPN). SPN can in some cases completely mask MFL signals from certain type of defects, and therefore considerably reduces the detectability of the defect signals. In this paper, a new de-noising algorithm called wavelet domain adaptive filtering is proposed for removing the SPN contained in the MFL data. The new algorithm results from combining the wavelet transform with the adaptive filtering technique. Results from application of the proposed algorithm to the MFL data from field tests show that the proposed algorithm has good performance and considerably improves the detectability of the defect signals in the MFL data. 展开更多
关键词 pipeline inspection magnetic flux leakage data discrete wavelet transform wavelet domain adaptive filtering seamless pipe noise
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部