随着栅极长度、硅膜厚度以及埋氧层厚度的减小,MOS器件短沟道效应变得越来越严峻。本文首先给出了决定全耗尽绝缘体上硅短沟道效应的三种机制;然后从接地层、埋层工程、沟道工程、源漏工程、侧墙工程和栅工程等六种工程技术方面讨论了...随着栅极长度、硅膜厚度以及埋氧层厚度的减小,MOS器件短沟道效应变得越来越严峻。本文首先给出了决定全耗尽绝缘体上硅短沟道效应的三种机制;然后从接地层、埋层工程、沟道工程、源漏工程、侧墙工程和栅工程等六种工程技术方面讨论了为抑制短沟道效应而引入的不同UTBB SOI MOSFETs结构,分析了这些结构能够有效抑制短沟道效应(如漏致势垒降低、亚阈值摆幅、关态泄露电流、开态电流等)的机理;而后基于这六种技术,对近年来在UTBB SOI MOSFETs短沟道效应抑制方面所做的工作进行了总结;最后对未来技术的发展进行了展望。展开更多
本文提出了一个新型的SOI埋层结构SOANN(silicon on aluminum nitride with nothing),用AIN代替传统的SiO2材料,并在SOI埋氧化层中引入空洞散热通道.分析了新结构SOI器件的自加热效应.研究结果表明:用AIN做为SOI埋氧化层的材料,降低了...本文提出了一个新型的SOI埋层结构SOANN(silicon on aluminum nitride with nothing),用AIN代替传统的SiO2材料,并在SOI埋氧化层中引入空洞散热通道.分析了新结构SOI器件的自加热效应.研究结果表明:用AIN做为SOI埋氧化层的材料,降低了晶格温度,有效抑制了自加热效应.埋氧化层中的空洞,可以进一步提供散热通道,使埋氧化层的介电常数下降,减小了电力线从漏端通过埋氧到源端的耦合,有效抑制了漏致势垒降低DIBL(drain Induced barrier lowering)效应.因此,本文提出的新型SOANN结构可以提高SOI器件的整体性能,具有优良的可靠性.展开更多
文摘随着栅极长度、硅膜厚度以及埋氧层厚度的减小,MOS器件短沟道效应变得越来越严峻。本文首先给出了决定全耗尽绝缘体上硅短沟道效应的三种机制;然后从接地层、埋层工程、沟道工程、源漏工程、侧墙工程和栅工程等六种工程技术方面讨论了为抑制短沟道效应而引入的不同UTBB SOI MOSFETs结构,分析了这些结构能够有效抑制短沟道效应(如漏致势垒降低、亚阈值摆幅、关态泄露电流、开态电流等)的机理;而后基于这六种技术,对近年来在UTBB SOI MOSFETs短沟道效应抑制方面所做的工作进行了总结;最后对未来技术的发展进行了展望。
文摘本文提出了一个新型的SOI埋层结构SOANN(silicon on aluminum nitride with nothing),用AIN代替传统的SiO2材料,并在SOI埋氧化层中引入空洞散热通道.分析了新结构SOI器件的自加热效应.研究结果表明:用AIN做为SOI埋氧化层的材料,降低了晶格温度,有效抑制了自加热效应.埋氧化层中的空洞,可以进一步提供散热通道,使埋氧化层的介电常数下降,减小了电力线从漏端通过埋氧到源端的耦合,有效抑制了漏致势垒降低DIBL(drain Induced barrier lowering)效应.因此,本文提出的新型SOANN结构可以提高SOI器件的整体性能,具有优良的可靠性.