An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained ...An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained in Jan. 2003 in the same area. And then, the chlorophyll, suspended sediments and gelbstoff of the SeaWiFS pixels on Jan. 29, 2003 corresponding to the in-situ sites of Jan. 25 and 26, 2003 were synchronously retrieved, with average relative errors of 14.9%, 12.1% and 13.6% for chlorophyll, suspended sediments and gelbstoff, respectively. The research results indicated that the optimal retrieval algorithm established here was relatively fit for the retrieval of the chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary, and had quite good retrieval accuracy.展开更多
Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is d...Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.展开更多
For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversio...For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversion parameters and subdivision scheme can, not only improve the inversion process efficiency, but also ensure inversion result accuracy. The gravity inversion method based on correlation searching and the golden section algorithm is an effective potential field inversion method. It can be used to invert 2D and 3D physical properties with potential data observed on flat or rough surfaces. In this paper, we introduce in detail the density inversion principles based on correlation searching and the golden section algorithm. Considering that the gold section algorithm is not globally optimized. we present a heuristic method to ensure the inversion result is globally optimized. With a series of model tests, we systematically compare and analyze the inversion result efficiency and accuracy with different parameters. Based on the model test results, we conclude the selection principles for each inversion parameter with which the inversion accuracy can be obviously improved.展开更多
We applied the reflectivity method and the constrained sparse spike inverse modeling(CSSI) method to the interpretation of coal field lithologic seismic data.After introducing the principles of these two methods we di...We applied the reflectivity method and the constrained sparse spike inverse modeling(CSSI) method to the interpretation of coal field lithologic seismic data.After introducing the principles of these two methods we discuss some parameters of a geological model involving possible gas enriched areas or intruded igneous rock.The geological model was constructed and a 60 Hz seismic response profile was obtained looking for igneous rock intrusion and coked areas of the coal seam using the reflectivity method.Starting from synthesized logging data from two wells and a synthesized seismic wavelet we calibrated the model to show accurate strata.Finally,we predicted the lithology within a 10 m igneous rock area,a 3 m coal seam area,and a coked area using the CSSI technique.The results show that the CSSI technique can identify hard to recognize lithologic features that normal profil-ing methods might miss.It can quantitatively analyze and evaluate the intrusive area,the coked area,and the gas-enriched area.展开更多
Induced polarization (IP) 3D tomography with the similar central gradient array combines IP sounding and IP profiling to retrieve 3D resistivity and polarization data rapidly. The method is characterized by high spa...Induced polarization (IP) 3D tomography with the similar central gradient array combines IP sounding and IP profiling to retrieve 3D resistivity and polarization data rapidly. The method is characterized by high spatial resolution and large probing depth. We discuss data acquisition and 3D IP imaging procedures using the central gradient array with variable electrode distances. A 3D geoelectric model was constructed and then numerically modeled. The data modeling results suggest that this method can capture the features of real geoelectric models. The method was applied to a polymetallic mine in Gansu Province. The results suggest that IP 3D tomography captures the distribution of resistivity and polarization of subsurface media, delineating the extension of abrupt interfaces, and identifies mineralization.展开更多
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
The concepts and methods used for the study of disordered systems have proven useful in the analysis of the evolution equations of quantum chromodynamics in the high-energy regime: Indeed, parton branching in the semi...The concepts and methods used for the study of disordered systems have proven useful in the analysis of the evolution equations of quantum chromodynamics in the high-energy regime: Indeed, parton branching in the semi-classical approximation relevant at high energies and at a fixed impact parameter is a peculiar branching-diffusion process, and parton branching supplemented by saturation effects(such as gluon recombination) is a reaction-diffusion process. In this review article, we first introduce the basic concepts in the context of simple toy models, we study the properties of the latter, and show how the results obtained for the simple models may be taken over to quantum chromodynamics.展开更多
文摘An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained in Jan. 2003 in the same area. And then, the chlorophyll, suspended sediments and gelbstoff of the SeaWiFS pixels on Jan. 29, 2003 corresponding to the in-situ sites of Jan. 25 and 26, 2003 were synchronously retrieved, with average relative errors of 14.9%, 12.1% and 13.6% for chlorophyll, suspended sediments and gelbstoff, respectively. The research results indicated that the optimal retrieval algorithm established here was relatively fit for the retrieval of the chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary, and had quite good retrieval accuracy.
基金supported by the National Scientific and Technological Plan(Nos.2009BAB43B00 and 2009BAB43B01)
文摘Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.
基金supported by Specialized Research Fund for the Doctoral Program of Higher Education of China(20110022120004)the Fundamental Research Funds for the Central Universities
文摘For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversion parameters and subdivision scheme can, not only improve the inversion process efficiency, but also ensure inversion result accuracy. The gravity inversion method based on correlation searching and the golden section algorithm is an effective potential field inversion method. It can be used to invert 2D and 3D physical properties with potential data observed on flat or rough surfaces. In this paper, we introduce in detail the density inversion principles based on correlation searching and the golden section algorithm. Considering that the gold section algorithm is not globally optimized. we present a heuristic method to ensure the inversion result is globally optimized. With a series of model tests, we systematically compare and analyze the inversion result efficiency and accuracy with different parameters. Based on the model test results, we conclude the selection principles for each inversion parameter with which the inversion accuracy can be obviously improved.
基金Projects 40874054 and 40804026 supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (2007CB209400 and 2009CB219603)the National Key Scientific and Technological Project (2008ZX05035)
文摘We applied the reflectivity method and the constrained sparse spike inverse modeling(CSSI) method to the interpretation of coal field lithologic seismic data.After introducing the principles of these two methods we discuss some parameters of a geological model involving possible gas enriched areas or intruded igneous rock.The geological model was constructed and a 60 Hz seismic response profile was obtained looking for igneous rock intrusion and coked areas of the coal seam using the reflectivity method.Starting from synthesized logging data from two wells and a synthesized seismic wavelet we calibrated the model to show accurate strata.Finally,we predicted the lithology within a 10 m igneous rock area,a 3 m coal seam area,and a coked area using the CSSI technique.The results show that the CSSI technique can identify hard to recognize lithologic features that normal profil-ing methods might miss.It can quantitatively analyze and evaluate the intrusive area,the coked area,and the gas-enriched area.
基金funded jointly by the National High Technology Research and Development Program(863 Program:No.2014AA06A610)special funds for basic scientific research business expenses of the Chinese Academy of Geological Sciences(No.YYWF201632)the National Major Scientific Instruments and Equipment Development Projects(No.2011YQ050060)
文摘Induced polarization (IP) 3D tomography with the similar central gradient array combines IP sounding and IP profiling to retrieve 3D resistivity and polarization data rapidly. The method is characterized by high spatial resolution and large probing depth. We discuss data acquisition and 3D IP imaging procedures using the central gradient array with variable electrode distances. A 3D geoelectric model was constructed and then numerically modeled. The data modeling results suggest that this method can capture the features of real geoelectric models. The method was applied to a polymetallic mine in Gansu Province. The results suggest that IP 3D tomography captures the distribution of resistivity and polarization of subsurface media, delineating the extension of abrupt interfaces, and identifies mineralization.
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
文摘The concepts and methods used for the study of disordered systems have proven useful in the analysis of the evolution equations of quantum chromodynamics in the high-energy regime: Indeed, parton branching in the semi-classical approximation relevant at high energies and at a fixed impact parameter is a peculiar branching-diffusion process, and parton branching supplemented by saturation effects(such as gluon recombination) is a reaction-diffusion process. In this review article, we first introduce the basic concepts in the context of simple toy models, we study the properties of the latter, and show how the results obtained for the simple models may be taken over to quantum chromodynamics.