Ecological degradation is a global problem, and ecological restoration technologies have played and will continue to play an important role in its mitigation. However, the lack of systematic research and evaluations o...Ecological degradation is a global problem, and ecological restoration technologies have played and will continue to play an important role in its mitigation. However, the lack of systematic research and evaluations of ecological technologies has thus far affected their effective application in vulnerable ecological regions. This study therefore provides an overview of the main technologies for remediating soil and water erosion, desertification, and rock desertification in China and throughout the world. It addresses key issues and recommends approaches for evaluating ecological restoration technologies. Restoration technology emerged as early as 1800. Over the years such technology has changed from single objective applications to multi-purpose, multi-objective applications employing strategies that take into account ecosystem rehabilitation and integrated ecological and socioeconomic development. Along with this technological evolution, different countries have taken pertinent actions as part of their restoration initiatives. However, key issues remain, including the lack of location-specific restoration technologies and a methodological strategy to assess and prioritize existing technologies. This study proposes a four-level analytical hierarchical framework in conjunction with an indicator system that highlights the establishment and adaptation of associative indicators, while also recommending a three-phase evaluation method(The Mert), targeting The Mert to qualitative(quick and extensive) and quantitative(detailed) evaluations in order to select the most appropriate restoration technologies available. This study can also be used as a basis for understanding the evaluation and prioritization of restoration technologies, while increasing the awareness of decision makers and the public on the role of technology in restoring degraded ecosystems.展开更多
In today's world, the innovation of science and technology has become the key support for improving comprehensive national strength and changing the mode of social production and lifestyle. The country that posses...In today's world, the innovation of science and technology has become the key support for improving comprehensive national strength and changing the mode of social production and lifestyle. The country that possesses world-class scientific and technological innovation cities maximizes the attraction of global innovation factors and wins a strategic initiative in international competition. Based on the urban zip code geodatabase, an evaluation system of urban innovation with the perspective of innovation outputs, and the spatial evolutionary mode, concerning the structure of innovation space of Shanghai and Beijing from 1991 to 2014, was developed. The results of the research indicated that the zip code geodatabase provided a new perspective for studying the evolving spatial structure of urban innovation. The resulting evaluation of the spatial structure of urban innovation using the urban zip code geodatabase established by connecting random edge points, was relatively effective. The study illustrates the value of this methodology. During the study period, the spatial structure of innovation of Shanghai and Beijing demonstrated many common features: with the increase in urban space units participating in innovation year by year, the overall gap of regional innovation outputs has narrowed, and the trend towards spatial agglomeration has strengthened. The evolving spatial structure of innovation of Shanghai and Beijing demonstrated differences between the common features during the 25 years as well: in the trend towards the suburbanization of innovation resources, the spatial structure of innovation of Shanghai evolved from a single-core to a multi-core structure. A radiation effect related to traffic arteries as spatial diffusion corridors was prominent. Accordingly, a spatial correlation effect of its innovation outputs also indicated a hollowness in the city center; the spatial structure of innovation of Beijing had a single-core oriented structure all the way. Together with the tendency for innovation resources to be agglomerated in the city center, the spatial correlation effect of innovation outputs reflected the characteristics of the evolutionary feature where "rural area encircles cities". The innovation spatial structure of Shanghai and Beijing have intrinsic consistency with the spatial structure of their respective regions(Yangtze River Delta urban agglomeration and Beijing-Tianjin-Hebei metropolitan region), which suggested that the principle of proportional and disproportional distribution of a city-scale pattern of technological and innovational activities is closely related to its regional innovation pattern.展开更多
On the basis of the results of simulation experiments, now we better understand the contribution of high carbon number hydrocarbons to diamondoid generation during thermal pyrolysis of crude oil and its sub-fractions(...On the basis of the results of simulation experiments, now we better understand the contribution of high carbon number hydrocarbons to diamondoid generation during thermal pyrolysis of crude oil and its sub-fractions(saturated, aromatic, resin, and asphalene fractions). However, little is known about the effect of volatile components in oil on diamondoid generation and diamondoid indices due to the lack of attention to these components in experiments. In this study, the effect of volatile components in oil on diamondoid generation and maturity indices was investigated by the pyrolysis simulation experiments on a normal crude oil from the HD23 well of the Tarim Basin and its residual oil after artificial volatilization, combined with quantitative analysis of diamondoids. The results indicate that the volatile components(≤n C12) in oil have an obvious contribution to the generation of adamantanes, which occurs mainly in the early stage of oil cracking(Easy Ro<1.0%), and influences the variations in maturity indices of adamantanes; but they have no obvious effect on the generation and maturity indices of diamantanes. Therefore, some secondary alterations e.g., migration, gas washing, and biodegradation, which may result in the loss of light hydrocarbons in oil under actual geological conditions, could affect the identification of adamantanes generated during the late-stage cracking of crude oil, and further influence the practical application of adamantane indices.展开更多
基金National Key Research and Development Program of China(2016YFC0503700)
文摘Ecological degradation is a global problem, and ecological restoration technologies have played and will continue to play an important role in its mitigation. However, the lack of systematic research and evaluations of ecological technologies has thus far affected their effective application in vulnerable ecological regions. This study therefore provides an overview of the main technologies for remediating soil and water erosion, desertification, and rock desertification in China and throughout the world. It addresses key issues and recommends approaches for evaluating ecological restoration technologies. Restoration technology emerged as early as 1800. Over the years such technology has changed from single objective applications to multi-purpose, multi-objective applications employing strategies that take into account ecosystem rehabilitation and integrated ecological and socioeconomic development. Along with this technological evolution, different countries have taken pertinent actions as part of their restoration initiatives. However, key issues remain, including the lack of location-specific restoration technologies and a methodological strategy to assess and prioritize existing technologies. This study proposes a four-level analytical hierarchical framework in conjunction with an indicator system that highlights the establishment and adaptation of associative indicators, while also recommending a three-phase evaluation method(The Mert), targeting The Mert to qualitative(quick and extensive) and quantitative(detailed) evaluations in order to select the most appropriate restoration technologies available. This study can also be used as a basis for understanding the evaluation and prioritization of restoration technologies, while increasing the awareness of decision makers and the public on the role of technology in restoring degraded ecosystems.
基金National Natural Science Foundation of China,No.41471108,No.41501141
文摘In today's world, the innovation of science and technology has become the key support for improving comprehensive national strength and changing the mode of social production and lifestyle. The country that possesses world-class scientific and technological innovation cities maximizes the attraction of global innovation factors and wins a strategic initiative in international competition. Based on the urban zip code geodatabase, an evaluation system of urban innovation with the perspective of innovation outputs, and the spatial evolutionary mode, concerning the structure of innovation space of Shanghai and Beijing from 1991 to 2014, was developed. The results of the research indicated that the zip code geodatabase provided a new perspective for studying the evolving spatial structure of urban innovation. The resulting evaluation of the spatial structure of urban innovation using the urban zip code geodatabase established by connecting random edge points, was relatively effective. The study illustrates the value of this methodology. During the study period, the spatial structure of innovation of Shanghai and Beijing demonstrated many common features: with the increase in urban space units participating in innovation year by year, the overall gap of regional innovation outputs has narrowed, and the trend towards spatial agglomeration has strengthened. The evolving spatial structure of innovation of Shanghai and Beijing demonstrated differences between the common features during the 25 years as well: in the trend towards the suburbanization of innovation resources, the spatial structure of innovation of Shanghai evolved from a single-core to a multi-core structure. A radiation effect related to traffic arteries as spatial diffusion corridors was prominent. Accordingly, a spatial correlation effect of its innovation outputs also indicated a hollowness in the city center; the spatial structure of innovation of Beijing had a single-core oriented structure all the way. Together with the tendency for innovation resources to be agglomerated in the city center, the spatial correlation effect of innovation outputs reflected the characteristics of the evolutionary feature where "rural area encircles cities". The innovation spatial structure of Shanghai and Beijing have intrinsic consistency with the spatial structure of their respective regions(Yangtze River Delta urban agglomeration and Beijing-Tianjin-Hebei metropolitan region), which suggested that the principle of proportional and disproportional distribution of a city-scale pattern of technological and innovational activities is closely related to its regional innovation pattern.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41172115&41372138)the National Science&Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011ZX05008-002-32)China Postdoctoral Science Foundation(Grant No.2014M561002)
文摘On the basis of the results of simulation experiments, now we better understand the contribution of high carbon number hydrocarbons to diamondoid generation during thermal pyrolysis of crude oil and its sub-fractions(saturated, aromatic, resin, and asphalene fractions). However, little is known about the effect of volatile components in oil on diamondoid generation and diamondoid indices due to the lack of attention to these components in experiments. In this study, the effect of volatile components in oil on diamondoid generation and maturity indices was investigated by the pyrolysis simulation experiments on a normal crude oil from the HD23 well of the Tarim Basin and its residual oil after artificial volatilization, combined with quantitative analysis of diamondoids. The results indicate that the volatile components(≤n C12) in oil have an obvious contribution to the generation of adamantanes, which occurs mainly in the early stage of oil cracking(Easy Ro<1.0%), and influences the variations in maturity indices of adamantanes; but they have no obvious effect on the generation and maturity indices of diamantanes. Therefore, some secondary alterations e.g., migration, gas washing, and biodegradation, which may result in the loss of light hydrocarbons in oil under actual geological conditions, could affect the identification of adamantanes generated during the late-stage cracking of crude oil, and further influence the practical application of adamantane indices.