期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于演化搜索信息的量子行为粒子群优化算法 被引量:6
1
作者 赵吉 程成 《计算机工程与应用》 CSCD 北大核心 2017年第9期41-46,126,共7页
针对量子行为粒子群优化算法可能过早收敛而陷入局部最优的问题,提出了基于演化搜索信息的非重复访问量子行为粒子群优化算法(Non-revisited QPSO,NrQPSO)。该算法将演化搜索信息记录方案和标准QPSO算法结合起来,确保所有更新的粒子位... 针对量子行为粒子群优化算法可能过早收敛而陷入局部最优的问题,提出了基于演化搜索信息的非重复访问量子行为粒子群优化算法(Non-revisited QPSO,NrQPSO)。该算法将演化搜索信息记录方案和标准QPSO算法结合起来,确保所有更新的粒子位置都是未被重复访问的,并通过变异操作增加粒子的多样性。演化搜索信息记录方案利用二维空间分割树(BSP)将连续搜索空间划分为不同的重叠子区域,并且将子区域作为粒子变异范围,使得相应的变异操作是一种无参数的自适应变异。对比其他传统算法,通过对八个标准测试函数的实验结果表明,NrQPSO算法在处理多峰和单峰测试函数时具有更好的优化性能,收敛精度和收敛速度都得到了提高,证明该算法的有效性。 展开更多
关键词 量子行为粒子群优化 演化搜索信息 二维空间分割 非重复访问
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部