The phase morphology evolution during the solid solution treatment and then artificial aging of the La-modified ZL107 Al alloy was studied. The results show that when the solid solution was held at 560 ℃ for 6 h, onl...The phase morphology evolution during the solid solution treatment and then artificial aging of the La-modified ZL107 Al alloy was studied. The results show that when the solid solution was held at 560 ℃ for 6 h, only partial Si phase dissolved into the matrix; however, the precipitation also occurred during the artificial aging process. The precipitation process in Al-Si alloys with or without La-modification was compared. After modification and heat treatment, the mechanical properties of the alloy were greatly enhanced, due to the modification and uniform distribution of Si phase.展开更多
The oxidation roasting process of molybdenum concentrate has significant advantages in industrial applications.However,utilization of low-grade mineral has many problems because it is more complex than the standard co...The oxidation roasting process of molybdenum concentrate has significant advantages in industrial applications.However,utilization of low-grade mineral has many problems because it is more complex than the standard concentrate.In this study,the oxidation behaviors of powdery rhenium-bearing low-grade molybdenum concentrate were investigated through thermodynamic calculation,roasting experiments,thermogravimetric analysis,and phase analysis.The results obtained show that oxidation of MoS2 begins at 450℃,and MoO3 reacts with metal-oxide forming molybdate at 600℃.Finally,MoO3 can be dissolved in ammonia with a maximum content of approximately 80%.The volatile speed of Re was considerably slower than the oxidation speed of MoS2 because the nonvolatile products ReO2 and ReO3 were generated in reactions among MoS2,SO2,and Re2O7.The final volatilization rate of Re was almost 70%.This study determined the problems related to the roasting of low-grade molybdenum concentrate,which lays the scientific foundations for subsequent enhancement of molybdenum and rhenium extraction.展开更多
The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying addition...The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.展开更多
A model for the morphological evolution of a void under thermal and mechanical loads is established, and the thermodynamics potential of the model is given based on energy principle. Thus, the path and the bifurcation...A model for the morphological evolution of a void under thermal and mechanical loads is established, and the thermodynamics potential of the model is given based on energy principle. Thus, the path and the bifurcation condition of the morphological evolution of the void are described, which gives some insight into the reliability of the interconnect under combined thermal and mechanical loads.展开更多
基金Project (50671083) supported by the National Natural Science Foundation of ChinaProject (09102008) supported by Key Laboratory of Ministry of Education for Conveyance and Equipment (East China Jiaotong University)Project (20114BAB216015) supported by the Natural Science Foundation of Jiangxi Province, China
文摘The phase morphology evolution during the solid solution treatment and then artificial aging of the La-modified ZL107 Al alloy was studied. The results show that when the solid solution was held at 560 ℃ for 6 h, only partial Si phase dissolved into the matrix; however, the precipitation also occurred during the artificial aging process. The precipitation process in Al-Si alloys with or without La-modification was compared. After modification and heat treatment, the mechanical properties of the alloy were greatly enhanced, due to the modification and uniform distribution of Si phase.
基金Projects(U1760107,U1660206)supported by the National Natural Science Foundation of ChinaProject(2013zzts064)supported by the Innovation Foundation for Postgraduate of Central South University,China
文摘The oxidation roasting process of molybdenum concentrate has significant advantages in industrial applications.However,utilization of low-grade mineral has many problems because it is more complex than the standard concentrate.In this study,the oxidation behaviors of powdery rhenium-bearing low-grade molybdenum concentrate were investigated through thermodynamic calculation,roasting experiments,thermogravimetric analysis,and phase analysis.The results obtained show that oxidation of MoS2 begins at 450℃,and MoO3 reacts with metal-oxide forming molybdate at 600℃.Finally,MoO3 can be dissolved in ammonia with a maximum content of approximately 80%.The volatile speed of Re was considerably slower than the oxidation speed of MoS2 because the nonvolatile products ReO2 and ReO3 were generated in reactions among MoS2,SO2,and Re2O7.The final volatilization rate of Re was almost 70%.This study determined the problems related to the roasting of low-grade molybdenum concentrate,which lays the scientific foundations for subsequent enhancement of molybdenum and rhenium extraction.
基金financial supports from the National Natural Science Foundation of China(No.52071207)the China Postdoctoral Science Foundation(Nos.2019TQ0193,2019M661497)+1 种基金the National Key Research and Development Program of China(No.2018YFB1106302)Anhui Provincial Engineering Research Center of Aluminum Matrix Composites,China(No.2017WAMC002)。
文摘The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.
基金the National Natural Science Foundation of China(Nos.10602034,10572088)
文摘A model for the morphological evolution of a void under thermal and mechanical loads is established, and the thermodynamics potential of the model is given based on energy principle. Thus, the path and the bifurcation condition of the morphological evolution of the void are described, which gives some insight into the reliability of the interconnect under combined thermal and mechanical loads.