CrAlYN coatings with different Y contents(0,5 and 12 at.%)were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure,mechanical and thermal properties of CrAlN coatings by u...CrAlYN coatings with different Y contents(0,5 and 12 at.%)were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure,mechanical and thermal properties of CrAlN coatings by using X-ray diffraction,scanning electron microscopy,differential scanning calorimetry,thermal gravimetric analysis and nanoindentation.The structural transformation of single phase cubic Cr_(0.42)Al_(0.58)N and Cr_(0.39)Al_(0.56)Y_(0.05)N coatings to cubic−wurtzite mixed Cr_(0.32)Al_(0.56)Y_(0.12)N coating leads to a drop in hardness from(30.2±0.7)GPa of Cr_(0.42)Al_(0.58)N and(32.0±1.0)GPa of Cr_(0.39)Al_(0.56)Y_(0.05)N to(25.2±0.7)GPa of Cr_(0.32)Al_(0.56)Y_(0.12)N.The incorporation of 5 at.%Y retards the thermal decomposition of CrAlN,verified by the postponed precipitation of w-AlN and N-loss upon annealing.Correspondingly,Cr_(0.39)Al_(0.56)Y_(0.05)N coating consistently exhibits the highest hardness value during thermal annealing.Nevertheless,alloying with Y exerts an adverse effect on the oxidation resistance of CrAlN.展开更多
The evolution of temperature field of the continual motion induction cladding and the depth of heat affected zone are studied in this study.A three-dimensional finite element model for the point type continual inducti...The evolution of temperature field of the continual motion induction cladding and the depth of heat affected zone are studied in this study.A three-dimensional finite element model for the point type continual induction cladding is established to investigate temperature distributions of fixed and motion induction cladding modes.The novel inductor is designed for cladding of curved surfaces.The modeling reliability is verified by the temperature measurements.The influence of process parameters on the maximum temperature and the generation and transfer of heat are studied.Quantitative calculation is performed to its melting rate to verify the temperature distribution and microstructures.The results show that a good metallurgical bond can be formed between the cladding layer and substrate.The melting rate gradually falls from the top of the cladding layer to the substrate,and the grain size in the substrate gradually rises.The heat affected zone is relatively small compared to integral heating.展开更多
A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission...A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission electron microscopy (TEM) observations demonstrate that ECAP leads to a significant grain refinement and ultrafine grains down to 100-200 nm are developed after 5 or 6 passes. X-ray diffraction (XRD) analysis indicates that the major part of Mg atoms are in solid solution in the deformed material, and the possible strengthening effect of Mg solute atom clusters or precipitates is neglected. The high hardness of the 6 pass-treated materials comes mainly from grain boundary strengthening, which contributes about 41% to the total strength, while dislocations and Mg solid solution contribute about 24% and 35% to the remaining strength, respectively. Also, the thermal stability of this severely deformed material was investigated by hardness measurements. The material is relatively stable when annealed at a temperature lower than 250 ℃, while annealing at 300 ℃ leads to a rapid softening of the material.展开更多
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51775560).
文摘CrAlYN coatings with different Y contents(0,5 and 12 at.%)were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure,mechanical and thermal properties of CrAlN coatings by using X-ray diffraction,scanning electron microscopy,differential scanning calorimetry,thermal gravimetric analysis and nanoindentation.The structural transformation of single phase cubic Cr_(0.42)Al_(0.58)N and Cr_(0.39)Al_(0.56)Y_(0.05)N coatings to cubic−wurtzite mixed Cr_(0.32)Al_(0.56)Y_(0.12)N coating leads to a drop in hardness from(30.2±0.7)GPa of Cr_(0.42)Al_(0.58)N and(32.0±1.0)GPa of Cr_(0.39)Al_(0.56)Y_(0.05)N to(25.2±0.7)GPa of Cr_(0.32)Al_(0.56)Y_(0.12)N.The incorporation of 5 at.%Y retards the thermal decomposition of CrAlN,verified by the postponed precipitation of w-AlN and N-loss upon annealing.Correspondingly,Cr_(0.39)Al_(0.56)Y_(0.05)N coating consistently exhibits the highest hardness value during thermal annealing.Nevertheless,alloying with Y exerts an adverse effect on the oxidation resistance of CrAlN.
基金Project(51575415)supported by the National Natural Science Foundation of ChinaProject(2016CFA077)supported by the Natural Science Foundation of Hubei Province of ChinaProject(2018-YS-026)supported by the Excellent Dissertation Cultivation Funds of Wuhan University of Technology,China。
文摘The evolution of temperature field of the continual motion induction cladding and the depth of heat affected zone are studied in this study.A three-dimensional finite element model for the point type continual induction cladding is established to investigate temperature distributions of fixed and motion induction cladding modes.The novel inductor is designed for cladding of curved surfaces.The modeling reliability is verified by the temperature measurements.The influence of process parameters on the maximum temperature and the generation and transfer of heat are studied.Quantitative calculation is performed to its melting rate to verify the temperature distribution and microstructures.The results show that a good metallurgical bond can be formed between the cladding layer and substrate.The melting rate gradually falls from the top of the cladding layer to the substrate,and the grain size in the substrate gradually rises.The heat affected zone is relatively small compared to integral heating.
基金Financial support from the SUP Project ‘Improvement’ (Pnr. 192450) financed by the Research Council of Norway
文摘A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission electron microscopy (TEM) observations demonstrate that ECAP leads to a significant grain refinement and ultrafine grains down to 100-200 nm are developed after 5 or 6 passes. X-ray diffraction (XRD) analysis indicates that the major part of Mg atoms are in solid solution in the deformed material, and the possible strengthening effect of Mg solute atom clusters or precipitates is neglected. The high hardness of the 6 pass-treated materials comes mainly from grain boundary strengthening, which contributes about 41% to the total strength, while dislocations and Mg solid solution contribute about 24% and 35% to the remaining strength, respectively. Also, the thermal stability of this severely deformed material was investigated by hardness measurements. The material is relatively stable when annealed at a temperature lower than 250 ℃, while annealing at 300 ℃ leads to a rapid softening of the material.