Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. Th...Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. The results showed that the main tree species were Picea and Abies in this region, and there were more than 90 forest types. Abies forests mainly dis-tributed in the middle and upper reaches of rivers and their branches, and Picea forests mainly distributed in wide valleys and on half-shaded and half-sunny slopes. The natural regeneration was poor under primitive spruce and fir forest canopy, but was good in the spruce and fire forest gap. The relationship between forest succession and vertical gradient was closely related to the relationship between forest succession procession and plant synusia under primary forests. Human activities could promote and postpone succession process. The results of expanding regeneration were often influenced by topography, vegetation and wind direction.展开更多
The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetatio...The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China. Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects. Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient 〈25°, while forest type B is pure forest or mixed forest composing of superior Quercus mongolica and Betula davurica in the area with gradient 〉25°. Species richness, vegetation coverage, important value, and similarity index of commtmity in different layers (Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests. The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B. Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency. Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined. Post-fire 80 years' succession tendency of forest type A is B. platyphylla and Larix gmelinii mixed forest. Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate; whereas, the post-fire 80 years' succession of forest type B is Q. mongolica and B. davurica mixed forest. Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.展开更多
Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This stud...Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus rnassoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca^2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na^+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SEC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K^+ to Na^+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca^2+ concentration among the three forests and Ca^2+:K^+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.展开更多
Abstract This study was conducted to clarify the characteristics high-pressure water sprayer in the period from June 2010 to April 2011 of algal succession following rock scraping using hoe or We divided the research ...Abstract This study was conducted to clarify the characteristics high-pressure water sprayer in the period from June 2010 to April 2011 of algal succession following rock scraping using hoe or We divided the research area off the eastern coast of Korean near Imwon into 3 categories depending upon the severity of the barren ground, i.e., the urchin barren-affected, urchin bar- ren-ongoing and urchin barren-free areas. In April 2011, in the urchin barren-affected area with 25 seaweed species, the cover per- centage and importance value (IV) of erustose coralline algae were higher than those of other species. In the urchin barren-ongoing area with 33 seaweed species, crustose coralline algae (mean IV=62%) as well as Sargassum sp. (mean IV=28%), and Gelidium amansii (mean IV= 19%) were observed following rock scraping. In the urchin barren-free area where seaweed communities were relatively abundant with 42 species, a variety of algal species including G. amansii (mean IV = 32%) underwent algal succession. Overall, it was observed that, as an aspect of algal succession, the weaker the barren ground severity was, the more frequent and di- verse the seaweeds were, and the more complex the succession pattern was in the study. As an aspect of recovering algal community, rock scraping using hoe was shown to be superior to the method using high-pressure water spraying. Therefore, we conclude that rock scraping using hoe is a very effective strategy for recovering the algal community in urchin barren-ongoing area.展开更多
Understanding the response of understory vegetation to fire disturbance is vital to biodiversity conservation and management of boreal forests. We surveyed understory vascular plant richness and composition, and measu...Understanding the response of understory vegetation to fire disturbance is vital to biodiversity conservation and management of boreal forests. We surveyed understory vascular plant richness and composition, and measured related environmental variables along a toposequence within three successional stages, initial (3 years post-fire), early (13 years post-fire) and late (〉1oo years post-fire) successional stages. Using permutation multivariate ANOVA and nonmetric multidimensional scaling, we analyzed how understory species richness and composition change as time-since-fire proceeds, and their correlative relationships with environmental variables. Species richness and composition showed significant differences among the three successional stages. Understory species richness and abundance were significantly associated with time-since-fire, topographic position, elevation and organic layer depth. Among these variables, time-since-fire had the strongest effect and topographic position was the second major factor on affecting understorycommunity assembly. In overwhelmed the effects addition, time-since-fire of soil pH in the initial successional stage and gravimetric soil moisture in early and late successional stages on understory species composition展开更多
The mechanisms responsible for species replacement during ecological successions is a long-standing and open debate. In this study, we examined the distribution of the Sardinian warbler Sylvia melanocephala along two ...The mechanisms responsible for species replacement during ecological successions is a long-standing and open debate. In this study, we examined the distribution of the Sardinian warbler Sylvia melanocephala along two grassland-to-forest gradients, one in a high-diversity area (Albera-Aspres chain in Catalonia: eight Sylvia warbler species) and one in a low-diversity area (Mount Hymittos in Greece: four species). In Catalonia, distribution models suggested that the apparent exclusion of S. melanocephala from the open and forest ends of the gradient may be explained entirely by the preference of S. melanocephala for mid-successional shrublands. However, a joint analysis of both data sets revealed that: 1) S. melanocephala was more evenly dis- tributed along the vegetation gradient in Greece, suggesting ecological release in the low-diversity area; and 2) a distribution model assuming interspecific competition (based on the distribution of Sylvia species showing a negative co-occurrence pattern with S. melanocephala) had a significantly higher predictive ability than a distribution model based on habitat variables alone. Our study supports the view that species turnover along ecological gradients generally results from a combination of intrinsic preferences and interspecific competition [Current Zoology 57 (3): 307-317, 2011].展开更多
基金This article was supported by State Tenth Five-Year Plan Project (2001BA510B0105) and the Project for Pioneering New Knowledge from Chinese Academy of Sciences (KZCX2-SW-319).
文摘Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. The results showed that the main tree species were Picea and Abies in this region, and there were more than 90 forest types. Abies forests mainly dis-tributed in the middle and upper reaches of rivers and their branches, and Picea forests mainly distributed in wide valleys and on half-shaded and half-sunny slopes. The natural regeneration was poor under primitive spruce and fir forest canopy, but was good in the spruce and fire forest gap. The relationship between forest succession and vertical gradient was closely related to the relationship between forest succession procession and plant synusia under primary forests. Human activities could promote and postpone succession process. The results of expanding regeneration were often influenced by topography, vegetation and wind direction.
文摘The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China. Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects. Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient 〈25°, while forest type B is pure forest or mixed forest composing of superior Quercus mongolica and Betula davurica in the area with gradient 〉25°. Species richness, vegetation coverage, important value, and similarity index of commtmity in different layers (Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests. The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B. Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency. Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined. Post-fire 80 years' succession tendency of forest type A is B. platyphylla and Larix gmelinii mixed forest. Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate; whereas, the post-fire 80 years' succession of forest type B is Q. mongolica and B. davurica mixed forest. Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.
基金Project supported by the National Natural Science Foundation of China (Nos. 30590381-03 and 30570350).
文摘Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus rnassoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca^2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na^+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SEC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K^+ to Na^+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca^2+ concentration among the three forests and Ca^2+:K^+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.
基金supported by a grant from the NIFS Fisheries Research Project ‘Development for Coast-Specific IMTA Technology (R2016015)’, Republic of Korea
文摘Abstract This study was conducted to clarify the characteristics high-pressure water sprayer in the period from June 2010 to April 2011 of algal succession following rock scraping using hoe or We divided the research area off the eastern coast of Korean near Imwon into 3 categories depending upon the severity of the barren ground, i.e., the urchin barren-affected, urchin bar- ren-ongoing and urchin barren-free areas. In April 2011, in the urchin barren-affected area with 25 seaweed species, the cover per- centage and importance value (IV) of erustose coralline algae were higher than those of other species. In the urchin barren-ongoing area with 33 seaweed species, crustose coralline algae (mean IV=62%) as well as Sargassum sp. (mean IV=28%), and Gelidium amansii (mean IV= 19%) were observed following rock scraping. In the urchin barren-free area where seaweed communities were relatively abundant with 42 species, a variety of algal species including G. amansii (mean IV = 32%) underwent algal succession. Overall, it was observed that, as an aspect of algal succession, the weaker the barren ground severity was, the more frequent and di- verse the seaweeds were, and the more complex the succession pattern was in the study. As an aspect of recovering algal community, rock scraping using hoe was shown to be superior to the method using high-pressure water spraying. Therefore, we conclude that rock scraping using hoe is a very effective strategy for recovering the algal community in urchin barren-ongoing area.
基金funded by the National Natural Science Foundation of China (Grant Nos. 31270511, 41501200)
文摘Understanding the response of understory vegetation to fire disturbance is vital to biodiversity conservation and management of boreal forests. We surveyed understory vascular plant richness and composition, and measured related environmental variables along a toposequence within three successional stages, initial (3 years post-fire), early (13 years post-fire) and late (〉1oo years post-fire) successional stages. Using permutation multivariate ANOVA and nonmetric multidimensional scaling, we analyzed how understory species richness and composition change as time-since-fire proceeds, and their correlative relationships with environmental variables. Species richness and composition showed significant differences among the three successional stages. Understory species richness and abundance were significantly associated with time-since-fire, topographic position, elevation and organic layer depth. Among these variables, time-since-fire had the strongest effect and topographic position was the second major factor on affecting understorycommunity assembly. In overwhelmed the effects addition, time-since-fire of soil pH in the initial successional stage and gravimetric soil moisture in early and late successional stages on understory species composition
文摘The mechanisms responsible for species replacement during ecological successions is a long-standing and open debate. In this study, we examined the distribution of the Sardinian warbler Sylvia melanocephala along two grassland-to-forest gradients, one in a high-diversity area (Albera-Aspres chain in Catalonia: eight Sylvia warbler species) and one in a low-diversity area (Mount Hymittos in Greece: four species). In Catalonia, distribution models suggested that the apparent exclusion of S. melanocephala from the open and forest ends of the gradient may be explained entirely by the preference of S. melanocephala for mid-successional shrublands. However, a joint analysis of both data sets revealed that: 1) S. melanocephala was more evenly dis- tributed along the vegetation gradient in Greece, suggesting ecological release in the low-diversity area; and 2) a distribution model assuming interspecific competition (based on the distribution of Sylvia species showing a negative co-occurrence pattern with S. melanocephala) had a significantly higher predictive ability than a distribution model based on habitat variables alone. Our study supports the view that species turnover along ecological gradients generally results from a combination of intrinsic preferences and interspecific competition [Current Zoology 57 (3): 307-317, 2011].