A finite reaction rate model is presented as a closure of large eddy simulation(LES) to numerically study an open premixed methane/air swirling flame. The resultant model is firstly validated by comparing with reporte...A finite reaction rate model is presented as a closure of large eddy simulation(LES) to numerically study an open premixed methane/air swirling flame. The resultant model is firstly validated by comparing with reported data and then employed to investigate the effect of swirling intensity on flow field, flame characteristics and combustion instability of the swirling flame. Three different swirl numbers are considered. The LES results show that as swirling intensity increases, the vortex entrainment and micro-mixing are enhanced, leading to more lean equivalent ratios at flame front; consequently, higher swirling number causes lower flame temperatures and slower CO oxidization; for all simulated swirl numbers,flame fronts are completely located out of the recirculation zones and anchored at the inner surface of the annular swirling steams; swirl number has a crucial effect on swirling flame extension toward radial and tangential dimensions and then significantly affects streamwise flame length, which is a great influencing factor on combustion instability; vortex-induced disturbance on flame in streamwise plays a critical role in combustion instability.展开更多
基金supported by the National Natural Science Foundation of China(51176169)the National Basic Research Program of China(2012CB214906)
文摘A finite reaction rate model is presented as a closure of large eddy simulation(LES) to numerically study an open premixed methane/air swirling flame. The resultant model is firstly validated by comparing with reported data and then employed to investigate the effect of swirling intensity on flow field, flame characteristics and combustion instability of the swirling flame. Three different swirl numbers are considered. The LES results show that as swirling intensity increases, the vortex entrainment and micro-mixing are enhanced, leading to more lean equivalent ratios at flame front; consequently, higher swirling number causes lower flame temperatures and slower CO oxidization; for all simulated swirl numbers,flame fronts are completely located out of the recirculation zones and anchored at the inner surface of the annular swirling steams; swirl number has a crucial effect on swirling flame extension toward radial and tangential dimensions and then significantly affects streamwise flame length, which is a great influencing factor on combustion instability; vortex-induced disturbance on flame in streamwise plays a critical role in combustion instability.