利用基于时-空传染型余震序列(Epidemic Type Aftershock Sequence,简称ETAS)模型的随机除丛法,重新审视了2008年5月12日汶川M_S8.0地震前可能存在的长期地震活动异常,研究了川滇地区背景地震活动特征,并评估了当前的强震危险状态.对川...利用基于时-空传染型余震序列(Epidemic Type Aftershock Sequence,简称ETAS)模型的随机除丛法,重新审视了2008年5月12日汶川M_S8.0地震前可能存在的长期地震活动异常,研究了川滇地区背景地震活动特征,并评估了当前的强震危险状态.对川滇地区1 970年以来的M_L3.0以上的背景地震和丛集地震活动的研究结果表明,该地区地震丛集特征明显、时空分布很不均匀、地震序列常有前震事件.直接将概率值作为地震计数的权重,对地震丛集率空间分布图像分析表明,汶川M_S8.0地震前,龙门山断裂带中南段存在着长期、大范围的地震丛集率低值区,震前该段处于应力闭锁状态.对川滇地区地震从集率低值区内背景地震与全部地震的累积次数、b值和新定义的Δb等统计参量的分析表明,龙日坝与龙门山断裂带具有地震活动的关联性,川滇地区当前的强震潜在危险区可能是巧家地区和汶川M_S8.0地震破裂尚未穿越的龙门山断裂带南段.此外,还发现b值倾向于反映局部应力场变化,而△b能较为敏感地给出更大范围应力场的相对变化.展开更多
A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eig...A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eighty-three people were killed or went missing and more than 103 houses were destroyed. In this paper, the geological conditions of the landslide are analyzed via field investigation and high-resolution imagery. The dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and Mac Cormack-TVD finite difference algorithm.Computational results show that the evaluated area of the danger zone matchs well with the results of field investigation. It is worth noting that soil sprayed by the high-speed blast needs to be taken into account for such kind of large high-locality landslide. The maximum velocity is about 55 m/s, which is consistent with most cases. In addition, the potential danger zone of an unstable block is evaluated. The potential risk area evaluated by the efficient depthintegrated continuum method could play a significant role in disaster prevention and secondary hazard avoidance during rescue operations.展开更多
In this paper we discuss the differences and relationship between"great earthquakes",rare ground motion,and very rare ground motion.Taking the Beichuan-Yingxiu potential seismic source zone in Longmenshan se...In this paper we discuss the differences and relationship between"great earthquakes",rare ground motion,and very rare ground motion.Taking the Beichuan-Yingxiu potential seismic source zone in Longmenshan seismic belt as an example,we revealed the relationship between the effects of"great earthquakes"and rare ground and very rare ground motion.After pointing out scientific and technical problems in the current seismic fortification system,we suggest that very rare ground motion should be considered if we want to deduce the potential hazard of great earthquakes in the future.展开更多
Two kinds of methods for determining seismic parameters are presented, that is, the potential seismic source zoning method and grid-spatially smoothing method. The Gaussian smoothing method and the modified Gaussian s...Two kinds of methods for determining seismic parameters are presented, that is, the potential seismic source zoning method and grid-spatially smoothing method. The Gaussian smoothing method and the modified Gaussian smoothing method are described in detail, and a comprehensive analysis of the advantages and disadvantages of these methods is made. Then, we take centrai China as the study region, and use the Gaussian smoothing method and potential seismic source zoning method to build seismic models to calculate the mean annual seismic rate. Seismic hazard is calculated using the probabilistic seismic hazard analysis method to construct the ground motion acceleration zoning maps. The differences between the maps and these models are discussed and the causes are investigated. The results show that the spatial smoothing method is suitable for estimating the seismic hazard over the moderate and low seismicity regions or the hazard caused by background seismicity; while the potential seismic source zoning method is suitable for estimating the seismic hazard in well-defined seismotectonics. Combining the spatial smoothing method and the potential seismic source zoning method with an integrated account of the seismicity and known seismotectonics is a feasible approach to estimate the seismic hazard in moderate and low seismicity regions.展开更多
The heavy floods in the Taihu Basin showed increasing trend in recent years. In this work, a typical area in the northern Taihu Basin was selected for flood risk analysis and potential flood losses assessment. Human a...The heavy floods in the Taihu Basin showed increasing trend in recent years. In this work, a typical area in the northern Taihu Basin was selected for flood risk analysis and potential flood losses assessment. Human activities have strong impact on the study area’s flood situation (as affected by the polders built, deforestation, population increase, urbanization, etc.), and have made water level higher, flood duration shorter, and flood peaks sharper. Five years of different flood return periods [(1970), 5 (1962), 10 (1987), 20 (1954), 50 (1991)] were used to calculate the potential flood risk area and its losses. The potential flood risk map, economic losses, and flood-impacted population were also calculated. The study’s main conclusions are: 1) Human activities have strongly changed the natural flood situation in the study area, increasing runoff and flooding; 2) The flood risk area is closely related with the precipitation center; 3) Polder construction has successfully protected land from flood, shortened the flood duration, and elevated water level in rivers outside the polders; 4) Economic and social development have caused flood losses to increase in recent years.展开更多
文摘利用基于时-空传染型余震序列(Epidemic Type Aftershock Sequence,简称ETAS)模型的随机除丛法,重新审视了2008年5月12日汶川M_S8.0地震前可能存在的长期地震活动异常,研究了川滇地区背景地震活动特征,并评估了当前的强震危险状态.对川滇地区1 970年以来的M_L3.0以上的背景地震和丛集地震活动的研究结果表明,该地区地震丛集特征明显、时空分布很不均匀、地震序列常有前震事件.直接将概率值作为地震计数的权重,对地震丛集率空间分布图像分析表明,汶川M_S8.0地震前,龙门山断裂带中南段存在着长期、大范围的地震丛集率低值区,震前该段处于应力闭锁状态.对川滇地区地震从集率低值区内背景地震与全部地震的累积次数、b值和新定义的Δb等统计参量的分析表明,龙日坝与龙门山断裂带具有地震活动的关联性,川滇地区当前的强震潜在危险区可能是巧家地区和汶川M_S8.0地震破裂尚未穿越的龙门山断裂带南段.此外,还发现b值倾向于反映局部应力场变化,而△b能较为敏感地给出更大范围应力场的相对变化.
基金Financial support from National Nature Science Foundation of China (Grant No. 41572303, 41520104002)Chinese Academy of Sciences “Light of West China” Program and Youth Innovation Promotion Association
文摘A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eighty-three people were killed or went missing and more than 103 houses were destroyed. In this paper, the geological conditions of the landslide are analyzed via field investigation and high-resolution imagery. The dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and Mac Cormack-TVD finite difference algorithm.Computational results show that the evaluated area of the danger zone matchs well with the results of field investigation. It is worth noting that soil sprayed by the high-speed blast needs to be taken into account for such kind of large high-locality landslide. The maximum velocity is about 55 m/s, which is consistent with most cases. In addition, the potential danger zone of an unstable block is evaluated. The potential risk area evaluated by the efficient depthintegrated continuum method could play a significant role in disaster prevention and secondary hazard avoidance during rescue operations.
基金funded by Special Project of Scientific Research in the Field of Earthquake Science,China Earthquake Administration(201308018 and 201108002)
文摘In this paper we discuss the differences and relationship between"great earthquakes",rare ground motion,and very rare ground motion.Taking the Beichuan-Yingxiu potential seismic source zone in Longmenshan seismic belt as an example,we revealed the relationship between the effects of"great earthquakes"and rare ground and very rare ground motion.After pointing out scientific and technical problems in the current seismic fortification system,we suggest that very rare ground motion should be considered if we want to deduce the potential hazard of great earthquakes in the future.
基金sponsored by the National Key Technology R&D Program,China (2006BAC13B01)
文摘Two kinds of methods for determining seismic parameters are presented, that is, the potential seismic source zoning method and grid-spatially smoothing method. The Gaussian smoothing method and the modified Gaussian smoothing method are described in detail, and a comprehensive analysis of the advantages and disadvantages of these methods is made. Then, we take centrai China as the study region, and use the Gaussian smoothing method and potential seismic source zoning method to build seismic models to calculate the mean annual seismic rate. Seismic hazard is calculated using the probabilistic seismic hazard analysis method to construct the ground motion acceleration zoning maps. The differences between the maps and these models are discussed and the causes are investigated. The results show that the spatial smoothing method is suitable for estimating the seismic hazard over the moderate and low seismicity regions or the hazard caused by background seismicity; while the potential seismic source zoning method is suitable for estimating the seismic hazard in well-defined seismotectonics. Combining the spatial smoothing method and the potential seismic source zoning method with an integrated account of the seismicity and known seismotectonics is a feasible approach to estimate the seismic hazard in moderate and low seismicity regions.
文摘The heavy floods in the Taihu Basin showed increasing trend in recent years. In this work, a typical area in the northern Taihu Basin was selected for flood risk analysis and potential flood losses assessment. Human activities have strong impact on the study area’s flood situation (as affected by the polders built, deforestation, population increase, urbanization, etc.), and have made water level higher, flood duration shorter, and flood peaks sharper. Five years of different flood return periods [(1970), 5 (1962), 10 (1987), 20 (1954), 50 (1991)] were used to calculate the potential flood risk area and its losses. The potential flood risk map, economic losses, and flood-impacted population were also calculated. The study’s main conclusions are: 1) Human activities have strongly changed the natural flood situation in the study area, increasing runoff and flooding; 2) The flood risk area is closely related with the precipitation center; 3) Polder construction has successfully protected land from flood, shortened the flood duration, and elevated water level in rivers outside the polders; 4) Economic and social development have caused flood losses to increase in recent years.