针对传统VSM(vector space model)在短文本分类中维数高、语义特征不明显的问题,提出基于LDA(latent Dirichlet allocation)模型主题分布相似度分类方法;针对短文本内容少、长度短、特征稀疏的问题,提出基于LDA模型主题-词分布矩阵的主...针对传统VSM(vector space model)在短文本分类中维数高、语义特征不明显的问题,提出基于LDA(latent Dirichlet allocation)模型主题分布相似度分类方法;针对短文本内容少、长度短、特征稀疏的问题,提出基于LDA模型主题-词分布矩阵的主题分布向量改进方法。与传统VSM分类方法相比,该方法降低了相似度计算维度,融合了一定语义特征。实验结果表明,与传统VSM分类方法相比,基于主题分布相似度方法的平均F1值提高了4.5%,基于LDA模型主题-词分布矩阵主题分布向量改进方法的平均F1值提高了5.2%,验证了以上方法的有效性。展开更多
针对社会化标签中资源之间存在独立同分布特性,并且其对应的标签资源作为资源内容的特殊语义内容,提出一种联合特征词加权-LDA(Joint Feature Word Weighting-LDA)在资源内容和标签下联合主题识别方法,从而解决资源存在的独立同分布特...针对社会化标签中资源之间存在独立同分布特性,并且其对应的标签资源作为资源内容的特殊语义内容,提出一种联合特征词加权-LDA(Joint Feature Word Weighting-LDA)在资源内容和标签下联合主题识别方法,从而解决资源存在的独立同分布特性以及特征词采样等问题。首先建立评论及对应标签资源在信息熵相似度条件下的潜在关系,对该潜在关系使用随机游走方法获取各组资源和各组标签的权值系数,消除资源间的独立同分布。通过加权方法加权至每个资源的特征词,形成资源特征词和标签特征词的权重值系数。在此基础上构建联合特征词加权-LDA模型,通过迭代学习方法获取社会化标签资源的隐含主题知识。通过实验表明,提出的联合特征词加权-LDA相对于其他主题模型具有更好的主题识别效果。展开更多
文摘针对传统VSM(vector space model)在短文本分类中维数高、语义特征不明显的问题,提出基于LDA(latent Dirichlet allocation)模型主题分布相似度分类方法;针对短文本内容少、长度短、特征稀疏的问题,提出基于LDA模型主题-词分布矩阵的主题分布向量改进方法。与传统VSM分类方法相比,该方法降低了相似度计算维度,融合了一定语义特征。实验结果表明,与传统VSM分类方法相比,基于主题分布相似度方法的平均F1值提高了4.5%,基于LDA模型主题-词分布矩阵主题分布向量改进方法的平均F1值提高了5.2%,验证了以上方法的有效性。
文摘针对社会化标签中资源之间存在独立同分布特性,并且其对应的标签资源作为资源内容的特殊语义内容,提出一种联合特征词加权-LDA(Joint Feature Word Weighting-LDA)在资源内容和标签下联合主题识别方法,从而解决资源存在的独立同分布特性以及特征词采样等问题。首先建立评论及对应标签资源在信息熵相似度条件下的潜在关系,对该潜在关系使用随机游走方法获取各组资源和各组标签的权值系数,消除资源间的独立同分布。通过加权方法加权至每个资源的特征词,形成资源特征词和标签特征词的权重值系数。在此基础上构建联合特征词加权-LDA模型,通过迭代学习方法获取社会化标签资源的隐含主题知识。通过实验表明,提出的联合特征词加权-LDA相对于其他主题模型具有更好的主题识别效果。