潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN...潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN作为个体进行集成,形成神经网络集成用于潜在问题分析.对CArNN模型的鲁棒性进行了分析,提出了两个保证模型鲁棒性的约束条件.利用此方法对一个经典电路进行了分析,结果显示,此方法对潜在电路的正确识别率达到94%.展开更多
文摘潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN作为个体进行集成,形成神经网络集成用于潜在问题分析.对CArNN模型的鲁棒性进行了分析,提出了两个保证模型鲁棒性的约束条件.利用此方法对一个经典电路进行了分析,结果显示,此方法对潜在电路的正确识别率达到94%.