A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model cor...A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R^(2))values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.展开更多
基金financially supported from the National Key Research and Development Program of China(No.2019YFC1803601)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0801)+1 种基金the Postgraduate Innovative Project of Central South University,China(No.2023XQLH068)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.QL20230054)。
文摘A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R^(2))values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.